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ABSTRACT

The main objective of this doctoral thesis is to design, analyze and implement novel con-
forming and nonconforming virtual element methods for solving problems that arise in fluid
mechanics and large scale wind-driven ocean circulation, formulated in terms of the stream-
function of the velocity field. The present study includes mathematical analysis for the con-
tinuous and discrete problems, a new and rigorous convergence analysis in several important
norms. Moreover, it includes numerical implementation to validate the theoretical results and
illustrate the behaviour of the discrete schemes.

Firstly, we propose and analyze a C'-conforming virtual element scheme of low order for
solving the stationary quasi-geostrophic equations of the ocean, formulated in terms of the
stream-function variable. Under the assumption of small data and by using a fixed-point
strategy, we establish the well-posedness of the discrete problem. Moreover, under standard
assumptions on the computational domain, we provide error estimates in H2-norm for the
stream-function.

Subsequently, we write a weak formulation for the linear Oseen problem in terms of the
stream-function on simply connected polygonal domains. Then, we propose and analyze C*-
conforming virtual discretization of arbitrary order £ > 2. We establish that the resulting
schemes converge with an optimal order in H?-norm. Besides, we compute further variables of
interest, such as the velocity, the vorticity and the pressure.

Additionally, we propose C! virtual element approximations of high order & > 2 for the
Navier-Stokes equations in stream-function form. A novel analysis is developed to prove opti-
mal error estimates in H2-, H'- and L2-norms, under minimal reqularity condition on the weak
stream-function solution. Furthermore, we extend these schemes to the system with nonstan-
dard boundary conditions on the pressure. Algorithms to compute the velocity, pressure and
vorticity fields as a postprocess of the discrete stream-function are proposed and optimal error
bounds are provided for these postprocessed variables.

Furthermore, we develop a fully-discrete virtual element scheme for the time dependent
Boussinesq system formulated in terms of the stream-function and temperature unknowns.
We employ the C'- and C%-conforming virtual element approaches to discretize the spatial
variables and for time derivatives we use a classical Euler implicit method. We provide the
well-posedness and unconditional stability of the fully-discrete scheme. Furthermore, we derive
error estimates in L?(H?) N L>°(H') and L?(H') N L>°(L?)-norms for the stream-function and
temperature variables, respectively.

Finally, we design a Morley-type virtual element method for solving the Navier-Stokes
problem in stream-function formulation. A rigorous stability and error analysis by employing
a new enriching operator is developed. More precisely, by using such operator, we provide
novel discrete Sobolev embeddings, which allows to establish the well-posedness of the discrete
formulation and obtain optimal error bounds in broken H2-, H!- and L2-seminorms, under
minimal regularity condition on the weak solution. Some important variables such as the
velocity, pressure and vorticity are obtained through postprocessing algorithms from the discrete
stream-function.

For all the situations described above, several numerical experiments are reported on differ-
ent families of polygonal meshes, illustrating the behavior of the virtual schemes and supporting
our theoretical findings.

Key Words: Conforming and nonconforming virtual element methods, Quasi-geostrophic
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equations, Navier—Stokes model, Oseen problem, nonstationary Boussinesq system, stream-
function formulation, discrete Sobolev embeddings, optimal error estimates, minimal regularity,
primitive variable recovery, polygonal meshes.
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RESUMEN

El objetivo principal de esta tesis doctoral es disenar, analizar e implementar nuevos métodos
de elementos virtuales conformes y no conformes para resolver problemas que surgen en la
mecanica de fluidos y la circulacién ocednica impulsada por el viento a gran escala, formulados
en términos de la funcion de corriente del campo de velocidades. El presente estudio incluye
andlisis matemaético para los problemas continuos y discretos, un nuevo y riguroso anéalisis de
convergencia en varias normas importantes. Ademas, se incluye implementacion numérica para
validar los resultados téricos e ilustrar el comportamiento de los esquemas discretos.

En primer lugar, proponemos y analizamos un esquema C*-conforme de elementos virtuales
de bajo orden, para resolver las ecuaciones cuasi-geostroficas estacionarias del océano, formu-
ladas en términos de la variable de funcion de corriente. Bajo el supuesto de datos pequenos y
mediante el uso de una estrategia de punto fijo, establecemos el bien planteamiento del problema
discreto. Ademaés, bajo suposiciones estandar sobre el dominio computacional proporcionamos
estimaciones de error en norma H? para la funcién de corriente.

Posteriormente, escribimos una formulacién débil para el problema lineal de Oseen en térmi-
nos de la funcion de corriente en dominios poligonales simplemente conexos. Luego, proponemos
y analizamos una discretizaciéon C' conforme de orden arbitrario & > 2. Establecemos que los
esquemas resultantes convergen con un orden 6ptimo en norma H2. Ademés, calculamos otras
variables de interés, como la velocidad, la vorticidad y la presion.

Adicionalmente, proponemos aproximaciones C! de elementos virtuales de orden superior
k > 2 para las ecuaciones de Navier—Stokes formuladas en términos de la funciéon de corriente.
Se desarrolla un novedoso analisis para probar estimaciones de error 6ptimas en las normas
H2, H! y L2, bajo condiciones de reqularidad minima de la funcion de corriente débil. Ademaés,
extendemos estos esquemas al sistema con condiciones de contorno no estandar sobre la presion.
Se proponen algoritmos para calcular los campos de velocidad, presion y vorticidad como un
postproceso de la funcion de corriente discreta y se han proporcionado cotas de error 6éptimos
para estas variables postprocesadas.

Ademés, desarrollamos un esquema de elementos virtual complemente discreto para el sis-
tema Boussinesq dependiente del tiempo formulado en términos de las incognitas funcién de
corriente y temperatura. Empleamos los enfoques C' y C° de elementos virtuales conformes
para discretizar las variables espaciales y para las derivadas temporales utilizamos un método
implicito clasico de Euler. Proporcionamos la buena postura y la estabilidad incondicional
del esquema totalmente discreto. Ademads, derivamos estimaciones de error en las normas
L?(H?) N L>(H') y L?(H') N L>°(L?) para las variables funcion de corriente y temperatura,
respectivamente.

Finalmente, disenamos un método de elementos virtuales tipo Morley para resolver el prob-
lema de Navier-Stokes en la formulacion de la funcién de corriente. Se desarrolla un riguroso
analisis de estabilidad y de error empleando un nuevo operador enriquecido. Mas precisa-
mente, utilizando dicho operador, proporcionamos novedosas inclusiones de Sobolev discretas,
que permiten establecer el buen planteamiento de la formulacion discreta y obtener cotas de
error 6ptimas en las seminormas H?, H! y L2, bajo condiciones de regularidad minima sobre
la solucién débil. Algunas variables importantes como la velocidad, la presion y la vortici-
dad se obtienen mediante novedosos algoritmos de posprocesamiento de la funcion de corriente
discreta.

Para todas las situaciones descritas anteriormente, se reportan varios experimentos numéri-
cos en diferentes familias de mallas poligonales, que ilustran el comportamiento de los esquemas
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virtuales y respaldan nuestros hallazgos tedricos.

Palabras Claves: Métodos de Elementos Virtuales conformes y no conformes, ecuaciones
quasi-geostroficas del océano, modelo de Navier—Stokes, problema Oseen, sistema no esta-
cionario de Boussinesq, formulacion de la funcion de corriente, inclusiones discretas de Sobolev,
estimaciones 6ptimas de error, minima regularidad, recuperacion de variables primitivas, mallas
poligonales.
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Chapter 1

Introduction

1.1 Motivation and general background

The numerical approximation of viscous incompressible fluid problems have acquired great
interest due to the variety of applications in different research areas, such as: engineering, en-
vironmental and industrial processes, oceanography, climatology, biomedicine, among others.
Depending on the type of phenomenon and the medium in which the fluid is located, different
mathematical models, such as, Brinkman, Oseen, Navier-Stokes, and Boussinesq models can be
used to obtain adequate results to study the dynamics of the fluid in terms of the specific vari-
ables of interest. Some examples are given by the velocity, pressure, temperature, pseudostress,
vorticity, and more importantly for the present thesis, the stream-function. In general, the
analytical solution of these problems is difficult to obtain. Therefore, it is necessary to develop
efficient numerical schemes to approximate their solutions.

In this thesis we are interested in solving linear and nonlinear problems with applications
to fluid mechanics and large scale wind-driven ocean circulation, namely: the one-layer Quasi-
Geostrophic equations of the ocean, the Oseen problem, the Navier-Stokes equations and the
Boussinesq system. In particular, for these models we are interested in formulations where the
stream-function is the principal unknown.

The stream-function formulation

Typically, the velocity-pressure formulation is the most commonly used to discretize the
Navier-Stokes equations (or other fluid flow problems). However, the stream-function formula-
tion has shown to be a competitive alternative to discretize these systems. In fact, if Q C R? is
a bounded simply connected domain, then we can associate to a divergence-free velocity field
u a scalar function v, such that

u = curl ¢, (1.1.1)

which is called stream-function. By using the above identity, we have that the incompressible
Navier-Stokes problem can be formulated in terms of this scalar variable. Such formulation is
given by a single fourth-order problem (cf. (4.1.1)), which is characterized for the presence of
the biharmonic operator. For further details, we refer to [103, Chapter IV, Section 2.1].

In the two dimensional case, we can highlight the following features of the stream-function
form: the system is reduced in a single scalar weak formulation, with automatic satisfaction
of the incompressibility constraint (by definition, see (1.1.1)), the possibility to recover further



2 Chapter 1. Introduction

variables of physical interest, such as; the velocity, pressure and vorticity fields through post-
processing algorithms from the stream-function. Additionally, it represents one of the most
useful tools in flow visualization and for linear models (Stokes or Brinkman problems) the
matrix associated turns out to be positive definite, allowing for more efficient methods such
as Cholesky factorization or conjugate gradient. Moreover, for nonlinear problems (such as
the Navier-Stokes and Boussinesq equations), the resulting trilinear form in the momentum
is naturally skew-symmetric (without adding additional terms), allowing more direct stability
and convergence arguments. Furthermore, the stream-function approach avoids the difficul-
ties related to the implementation of the boundary vorticity values, which are presented in
stream-function—vorticity form.

Due to the attractive characteristics discussed above, the stream-function formulation has
received significant attention from many researchers. In particular, a notable number of works
have been devoted to the design and analysis of numerical methods to approximate the Navier-
Stokes problem. For instance, conforming and nonconforming Finite Element Methods (FEMs)
in [71, 72, 90, 91, 68|, Bivariate Spline methods [115], hp-version discontinuous FE [143],
NURBS-based Isogeometric Analysis in [151]. Moreover, in [95, 111] C'-conforming and non-
conforming Morley FEMs has been studied for solving the steady quasi-geostrophic equations
in stream-function formulation (compare below the systems (2.2.1) and (4.1.1)).

On the other hand, we recall that to discretize fourth-order problems in primal form, using
the classical conforming FE spaces yields notable disadvantages: firstly, the construction of
these spaces involve high-order polynomials and a large number of degrees of freedom (at least
18 for triangular polynomial elements), which commonly is considered a demanding task from
the computational viewpoint. A possible alternative to avoid such high order polynomials is
to resort to very complicated FE construction (for instance, the Hsieh-Clough-Tocher or the
singular Zienkiewicz triangles). Moreover, the regularity requirements of the weak solution are
high, which are not realistic and inappropriate in practice. The main reason of these difficulties
is the required continuity of the first order partial derivatives across adjacent elements. For
further details, we refer to [79, Chap. 6, sect. 6.1]).

In order to overcome these drawbacks, in this thesis we consider the approach presented
in [58, 77, 18] to introduce C'-virtual element methods to approximate linear and nonlinear
fluid flow problems in stream-function formulation. On the other hand, we contribute to the
development and analysis of novel nonconforming Morley-type virtual schemes to discretize the
Navier-Stokes equations.

1.2 The Virtual Element Method

The Virtual Element Method (VEM) was presented to the scientific community for first time
about 10 years ago in the pioneering paper [27] as an evolution of mimetic finite differences
and a generalization of FEM. The VEM belongs to the group of polytopal GGalerkin schemes for
solving PDEs, which have received significant interest in recent years due to their versatility in
dealing with complex geometries (see for instance [149, 86, 32, 108, 70, 88]).

According to [27] the general features of VEM can be summarized as follows:

e The discrete local spaces are built in such a way that they contain the polynomial spaces
of degree up to k (this fact determines the accuracy of the method), and other non-
polynomials functions that are solution of a PDE problem inside the element, which is
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never resolved. Therefore, the exact values in the interior of the polygon/polyhedron of
these shape functions are unknown (hence the terminology “virtual”).

e Only the evaluation of the degrees of freedom is required in the design of the forms
appearing in the discrete formulation. The degrees of freedom are chosen carefully so that
the projections onto polynomial spaces can be computed using only their information.

e The bilinear forms appearing in the discrete formulation are built based on two main
ingredients: projections from local virtual element spaces onto polynomial spaces and
bilinear forms that stabilize the scheme.

From the first and second items, we observe that the approach of VEM allows to avoid an
explicit construction of the discrete basis functions and this fact implies a high flexibility of
the method, for instance, VEM has the ability to design numerical schemes of high-order on
general polygonal meshes (including the desired nonconvex shapes and “hanging vertexes”) in a
straightforward way. Moreover, the method has capability to build discrete spaces with high-
regularity (C®-regularity, with @ > 1) and construct divergence-free schemes in the context of
fluid flow problems. Due to these characteristics, the VEM has achieved significant success in
computational modeling and practical engineering uses, both in its conforming and noncon-
forming frameworks (see for instance |7, 65, 29, 39, 22, 126, 127, 153, 159, 116]). In particular,
many works have been devoted to approximate the solutions of problems in fluid mechanics
by using the VEM technology. Below are two list of representative works in the conforming
and nonconforming cases; [17, 59, 34, 98, 35, 157, 41, 97, 21, 131] and [64, 118, 164, 119, 162],
respectively.

Conforming and fully nonconforming VEMs for fourth-order problems

Due to its importance, applicability and challenging nature, the construction of Galerkin
schemes to solve fourth-order problems has been a very active area of research. Indeed, a wide
variety of numerical approaches have been presented for solving these systems, see for instance
[79, 68, 142, 101, 53] and references therein, where classical conforming and nonconforming FE
schemes, C°-IP methods, among others have been developed and analyzed.

Recently, in [58] was introduced a family of C'-VEM of high order & > 2, to solve the
Kirchhoff-Love plate problem, which in the lowest order case employed only 3 degrees of freedom
per mesh vertex (the function and its gradient values vertex). This fact makes C1-VEM a very
attractive and competitive approach compared to the typical C1-FEMs.

Subsequently, in [18] was introduced a variant of this family. More precisely, by employing
the enhancement technique [7], a C1-VEM of lowest order was developed and analyzed for the
two dimensional Cahn-Hillard equation. In the same year, the authors in [77] also designed
a variant of the high-order VEMs presented in [58]. By using also the ideas developed in [7]
the authors design an enhancement C'-VEMs for solving fourth-order problems, obtaining now
optimal error estimates in the weak L?- and H!-norms.

Additionally, in [36, 19], the authors investigated the application of VEM to construct finite
dimensional spaces of arbitrarily regular C'“-functions, with o > 1, where promising results
have been observed to solve equations involving high order PDEs.

It is important to point out that in [30] the authors designed a C'-VEM for the challenging
case of three-dimensional fourth-order problems.
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Since then, several schemes and analyses based on the C'-conforming VEM have been
designed for solving linear and nonlinear problems; below is a non-exhaustive list of works [38,
135, 116, 159, 139, 122, 3, 56, 1].

In Table 1.1, we illustrate a comparison between the C1-VEM of lowest order and classical
C'-FEMs used to approximate fourth-order problems, namely; the Argyris and Bell triangles,
the Hsieh—Clough—Tocher (HCT) element and the Bogner-Fox-Schmit rectangle. In particular,
we show the numbers of local (NZ) and global (NZf) degrees of freedom (DoFs) for the
numerical schemes, the polynomial spaces (P;) involved and the regularity conditions on the
weak solution to obtain error estimates. We observe that the C'-VEM in the lowest order case
employ only 3 DoFs per vertex of the mesh, i.e, 3N, where NN, denotes the number of vertices
in the polygonal mesh (9 on a triangle and 12 for rectangle), which is much smaller than that of
the traditional conforming FEMs. Moreover, from the analysis developed in Section 4.4.2 (see
also Theorem 4.4.3), we observe that the C'-VEM of lowest order needs the slightest regularity
requirement for the weak stream-function to establish error estimates, even for the nonlinear
Navier-Stokes problem in stream-function form.

type of elements \ Nt \ Py \ Ngot \ assumed regularity
C'-VEMs of lowest order 9 | Py| 3N, | H*(Q), s € (0,1]
Argyris triangle 21 | P5 | 9N, HS(Q2)
Bell triangle 18 | Py | 6Ny H?(Q)
HCT element 12 | P3| 6Ny H*(Q)
Bogner-Fox-Schmit rectangle | 16 | P3| 4N, H*(Q)

Table 1.1: The numbers of local and global DoFs for the conforming C'-VEM of lowest order
and for some typical C'-FEMs, the polynomial spaces involved and regularity conditions on
the weak solution to obtain error estimates.

On the other hand, in [20, 163| the authors introduced independently a few families of
VEMs to solve fourth-order problems in an alternative way. The schemes are based on fully-
nonconforming VEMs of high-order & > 2. In particular, the lowest order configuration (i.e.,
k = 2) of these VEMs can be consider as the extension of the popular Morley FE [141] to
general polygonal meshes. Since then, several schemes and analysis based on these VEMs have
been developed for linear problems; see for instance [116, 159, 81, 107, 67, 4].

According to the above discussion, in this thesis we are interested in further exploring the
ability of the conforming and fully nonconforming VEM to approximate fourth-order problems
that arise in fluid mechanics, considering the stream-function approach.

We summarize below the contributions of our study.

The stationary quasi-geostrophic equations of the ocean

The quasi-geostrophic equations (QGE) is a fundamental mathematical model used to de-
scribe the large scale wind-driven motions of the ocean. It is a simplified model that is particu-
larly useful for understanding the dynamics of geophysical fluid flows in the Earths oceans (see
for instance [124, 145, 156]) and due to their important role and applicability in the climate
dynamics, in recent years there has been an increasing focus on the development of efficient
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numerical schemes to solve such equations. For instance, in the last decades several work devel-
oped discretization for this model formulated in terms of the vorticity—stream-function variables
[69, 93, 130]. However, more recently the authors in [95] have been presented and analyzed for
first time a FEM for these equations in pure stream-function formulation, which corresponds to
a nonlinear Partial Differential Equation (PDE) of fourth-order (cf. (2.2.1)). This FE scheme is
based on the conforming Argyris element. Moreover, in [113, 110, 10, 112, 111] other conforming
and nonconforming FEMs have been designed to solve the stationary QGE.

In Chapter 2, we propose and analyze a Cl-conforming VEM to solve the stationary
quasi-geostrophic equations with applications in the large scale wind-driven ocean circulation,
formulated in terms of the stream-function. The C! virtual space and the discrete scheme
are built in a straightforward way due to the flexibility of the virtual approach. Under the
assumption of small data, we prove the well-posedness of the discrete problem using a fixed-
point strategy and under standard assumptions on the computational domain, we establish error
estimates in H?-norm for the stream-function. Finally, we report four numerical experiments
that illustrate the behaviour of the proposed scheme and confirm our theoretical results on
different families of polygonal meshes.

The results contained in this chapter gave rise to the following article:

» D. MORA AND A. SILGADO, A C' wirtual element method for the stationary quasi-
geostrophic equations of the ocean, Comput. Math. Appl., 116 (2022), pp. 212-228.

The stream-function formulation of the Oseen equations

The Oseen equations results from a linearization of the steady (or alternatively from the
implicit Euler time-discretization of the unsteady) Navier—Stokes problem. This equation pro-
vides a simplified yet accurate representation of fluid flow under certain conditions and has
been instrumental in various engineering and scientific applications.

In the last year, several work have been devoted to the development and analysis of Galerkin
schemes for the numerical solution of the Oseen equations employing different formulations. In
particular, we mention [8, 13, 23, 24, 25, 52, 61, 78, 73, 94|, where HHO, classical and stabilized
FEMs, Least-squares methods, among others have been proposed.

In Chapter 3, we analyze VEMs to solve the Oseen equations in terms of the stream-
function on simply connected polygonal domains. The methods are based on a C'-conforming
virtual discretization of arbitrary order £ > 2. Under standard assumptions on the compu-
tational domain, we establish that the resulting schemes converge with an optimal order in
H2-norm. The proposed methods have the advantages of using general polygonal meshes and
the possibility to compute further variables of interest, such as the velocity, the vorticity and
the pressure. Finally, we report some numerical tests illustrating the behavior of the virtual
schemes and supporting our theoretical results on different families of polygonal meshes.

The results contained in this work are in the following book chapter:

» D. MORA AND A. SILGADO, Virtual element methods for a stream-function formulation
of the Oseen equations. In: Antonietti, P.F., Beirdo da Veiga, L., Manzini, G. (eds), The
Virtual Element Method and its Applications. SEMA SIMAT Springer Series, vol 31, pp.
321-361, (2022). Springer, Cham.
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The stationary Navier-Stokes equations in stream-function
formulation

The Navier-Stokes is one of most important and challenging problems in fluid mechanics.
This system describes the motion of a viscous incompressible fluid in a medium. Mathemat-
ically, the standard model corresponds to a combination of the conservation of mass and a
nonlinear PDEs, where the velocity and pressure are the unknowns, which is called the momen-
tum equation (see (6.1.1)). The analytic solution of this system continues to be a paradigm in
fluid flow problems. Thus, due to its importance and applicability, several numerical methods
have been developed to approximate its solution. Among these schemes, we mention classi-
cal Galerkin methods in mixed form used to discretize its standard formulation in terms of
the primitive variables velocity and pressure. In this framework, the discrete spaces must be
constructed appropriately to satisfy the inf-sup condition, ensuring the well-posedness of the
mixed discrete formulation (see [103]).

Another desirable yet restrictive condition for these schemes is the one associated with
the incompressibility requirement, a scenario in which the error components are partly decou-
ple (but indirectly in the load term approximation) and for which different approaches have
been devoted to the construction of schemes satisfying this property (see for instance the re-
view [109]).

As we discussed previously, by introducing the stream-function variable ¢ (cf. (1.1.1)), the
typical velocity-pressure form is reduced in a single nonlinear fourth-order PDEs (cf. (4.1.1)).
For this formulation the discretization does not need the construction of discrete stable spaces
satisfying the inf-sup condition, in addition the incompressibility constraint is automatically
satisfied. Below we mention some works discretizing this formulation by using conforming and
nonconforming FEMs |71, 72, 90, 91, 92, 68].

Motivated in the above discussion (and in the facts mentioned in the initial sections), we are
interesting in keeping on exploring the flexibility and ability of VEM to solve the Navier-Stokes
equation in stream-function formulation. In particular, we propose novel C'-VEMs and a new
Morley-type VEM to discretize this problem.

In Chapter 4, C1-VEMs of arbitrary order k& > 2 for the two-dimensional Navier-Stokes
equations in stream-function form are proposed and analyzed. A novel analysis is developed
to prove optimal error estimates in H?-, H!- and L2-norms, under minimal reqularity condition
on the weak stream-function solution. Moreover, we extend these schemes to the system with
boundary conditions on the pressure. Strategies to compute the velocity, pressure and vorticity
fields as a postprocess of the discrete stream-function are proposed and optimal error estimates
have been established for these variables. The theoretical findings are further confirmed via
illustrative numerical experiments on different families of polygonal meshes.

The results of this conforming approach are in the following submitted article:

» D. MORA AND A. SILGADO, Virtual elements for the Navier-Stokes system: stream-

function form and primitive variables recovery algorithms, submitted for publication
(2023).

On the other hand, in Chapter 6, we propose an alternative to discretize the Navier-
Stokes equations in stream-function form. Indeed, we design a nonconforming Morley-type
virtual element method for solving such system on simply connected polygonal domains (not
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necessarily convex). A rigorous analysis by using a new enriching operator is developed. More
precisely, by employing such operator, we provide novel discrete Sobolev embeddings, which
allow to establish the well-posedness of the discrete scheme and obtain optimal error estimates
in broken H?-, H'- and L2-norms under minimal regularity condition on the weak solution.
The velocity and vorticity fields are recovered via postprocessing formulas. Furthermore, a new
algorithm for pressure recovery based on a Stokes complex sequence is presented. Optimal error
estimates are obtained for all the postprocessed variables. Finally, the theoretical error bounds
and the good performance of the method are validated through several benchmark tests.
The results with this nonconforming approach are in the following article:

» D. Apak, D. MORA AND A. SILGADO, The Morley-type virtual element method for

the Navier-Stokes equations in stream-function form, Comput. Methods Appl. Mech.
Engrg., 419 (2024), Paper No. 116573.

The nonstationary Boussinesq system in stream-function
form

The Boussinesq system describes the behavior of fluid flow in the presence of buoyancy
effects. This system are particularly useful for studying natural convection phenomena, where
fluids experience motion due to differences in temperature. The primary focus of these equations
is to capture the interplay between the pressure, velocity, and temperature fields in the fluid
domain. This model is a valuable tool in understanding and predicting the complex behavior
of fluids under the influence of buoyancy forces and have numerous applications in areas such
as meteorology, environmental, industrial and engineering process, among others.

Due to its relevance and presence in the different applications mentioned above, many works
have been devoted to studying these equations (and some variants). For instance, regarding
the analysis of stability and regularity, we refer to [140, 121]|. Besides, over the last decades
several numerical schemes have been developed to approximate this problem in its steady
and/or unsteady regimens, considering temperature-dependent parameters, and using the clas-
sical velocity—pressure—temperature and pseudostress—velocity—temperature formulations, see
for instance [47, 50, 150, 161, 144, 9, 82, 85, 11| and the references therein. In addition, some
numerical work have been devoted to approximate these equation by using the stream-function—
vorticity approaches, see for instance [148, 152, 120, 160].

In Chapter 5, we propose and analyze fully-coupled virtual element approximations of
high order for solving the two dimensional nonstationary Boussinesq system in terms only
of the stream-function and temperature fields. The discretization for the spatial variables is
based on the coupling C'- and C%-conforming virtual element approaches, while a backward
Euler scheme is employed for the temporal variable. Well-posedness and unconditional stability
of the fully-discrete problem are provided. Moreover, error estimates in L2(H?) N L>°(H')
and L2(H') N L*°(L?)-norms are derived for the stream-function and temperature, respectively.
Finally, a set of benchmark tests are reported to confirm the theoretical error bounds and
illustrate the behavior of the fully-discrete scheme.

The results contained in this chapter are in the following article:

» L. BEIRAO DA VEIGA, D. MORA AND A. SILGADO, A fully-discrete virtual element
method for the nonstationary Boussinesq equations in stream-function form, Comput.
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Methods Appl. Mech. Engrg., 408 (2023), Paper No. 115947.

1.3 Preliminary notations

In this section we will introduce some preliminary notations that will be used throughout
this thesis, including those already employed above. Thenceforth, 2 will denote a simply
connected, open and bounded domain of R?, with polygonal Lipschitz-continuous boundary
I' := 09Q). The vector n = (n;)1<i<2 Will denote the outward unit normal vector to the boundary
I, while t = (¢;);=12 := (—n2,n1) denote the unit tangent vector to I'. Moreover, we denote by
On and 0y the normal and tangential derivatives, respectively.

According to [6], for any open measurable bounded domain D C ), with Lipschitz-continuous
boundary we will employ the usual notation for the Banach spaces LP(D) and the Sobolev spaces
W2 (D), with s > 0 and p € [1, +o0], with the corresponding seminorms and norms are denoted
by |- lwgpy and || - [lws(p), respectively. We adopt the convention W)(D) := LP(D) and in
particular when p = 2, we write H*(D) instead to W5(D), the corresponding seminorm and
norm of these space will be denoted by | - |sp and || - ||sp, respectively. Furthermore, for any
integer ¢ > 0 denote by Py(D) the space of polynomials of degree up to ¢ defined on an open
bounded subdomain D C R2.

In addition, we denote by S the corresponding vectorial version of a generic scalar S space,
examples of this are: W3 (D) := [W;(D)]* and Py(D) = [P,(D)]*.

For any tensor fields 7 = (7;;)i j=12 and o = (0yj); j=1,2, we consider the standard scalar
product of 2 x 2-matrices: T : o = Z?Zl 7;;0i;. Moreover, for any scalar field ¢ and vector
fields v = (v;)i=12, W = (w;);=12, the scalar, vectorial and tensorial L?-inner products will be
denoted by

(()07 ¢)0,D - / 2 ¢ dDu <V7W)O,D - / vV-w dD? <T7 O-)O,D — / T:0dD.
D D D

We recall the following differential operators (gradients, curl, matrix Hessian, divergence
and rotational):

L (91(,0 L 8290 2 5. ).
Vo = (8280) , curl ¢ := <—3130 : D¢ := (0i50)ij=1,2
Vv = (0v)) =12, divVv =010 + 0oy, 10tV := 0105 — Do01.

Besides, the Laplacian and Bilaplacian operators are defined by Ay := div(Vy) and A%p :=
A(Ap), respectively. The bold symbols V and A denote the gradient and Laplacian operators
for vector fields, respectively.

On the other hand. From the Green Theorem, for all ¢ € H'(D), u € H*(D) and for any
v € HY(D), we have the following integration by parts.

/Vq~V:—/qdivv+/ q(v-np),
D D aD
/un:—/Vu-Vq—l—/ qOnptt,
D D oD
/curlq~v=/qr0tv+/ q(v-tp).
D D oD
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For the evolution problem studied in Chapter 5, we will denote by ¢ the temporal variable
with values in the interval I := (0,7, where 7" > 0 is a given final time. Moreover, given a
Banach space V' endowed with the norm || - ||y, we define the space L?(0,7; V') as the space of
classes of functions ¢ : (0,7') — V that are Bochner measurable and such that ||¢[|1»o.7,v) < 00,
with

T 1/p
ol = [ 10OIEar)  and [olumora = ess suplofo)ly
0 te[0,T]

In what follows, ¢ and C', with or without subscripts, tildes, or hats, will represent a generic
constant independent of the mesh parameter h, that might have distinct values in different
occurrences.



Chapter 2

A C! virtual element method for the
stationary quasi-geostrophic equations of
the ocean

2.1 Introduction

The quasi-geostrophic equations (QGE) is one of the popular mathematical models employed
for understanding the behavior of the large scale wind-driven ocean circulation [124, 145, 156].
Due to their important role in the climate system, there has been a growing interest in recent
years towards developing efficient numerical schemes to solve such equations. We are going to
consider the so-called one-layer QGE (also called as the barotropic vorticity equation), where
the flow is assumed to be homogeneous in the vertical direction. Thus, stratification effects are
ignored in this model and a bi-dimensional nonlinear fourth order partial differential equation,
in terms of the stream-function variable, can be written. Despite the simplifications, the model
preserves many of the essential features of the underlying large scale ocean flows. Further
details related to the derivation of these equations can be found in [123, 129]. On the other
hand, we note that the QGE equations can be seen as an extension of the stream-function
formulation of the Navier—Stokes equations (NSE).

Different finite element discretizations have been developed recently for these equations.
For instance, in [95] is presented a conforming finite element based on the Argyris element,
optimal error estimates are obtained and several numerical experiment are reported. In [113]
the authors present a B-spline based conforming finite element method to approximate the
stream-function, also several numerical simulations are performed. Error estimates for this
method are presented in [110] and a posteriori error analysis has been recently analyzed in
[10]. In [112], is presented a non-conforming C°-discontinuous Galerkin method, the authors
introduced the new variational form of the method and they established consistency and error
estimates. In addition, the quasi-geostrophic equations have been solved by using different
finite element methods in terms of the stream-function and vorticity variables in the following
references (69, 93, 130, 132]. Moreover, finite element methods for the Navier—Stokes equations
in stream-function formulation have been presented in |71, 72, 90, 92|.

It is well known that conforming finite element spaces of H? are of complex implementation
and contain high order polynomials (see [79]). In order to overcome this drawback, in this
work, we extend the virtual element approach proposed in [18] for the numerical solution of

10
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the QGE equations in stream-function formulation, which can be applied to general polygonal
meshes and is simple in terms of degrees of freedom and coding aspects. In fact, it has been
shown that the VEM permits to easily implement highly regular discrete spaces on general
polygonal meshes. For instance, global discrete virtual spaces of H? to solve fourth order PDEs
have been presented in [18, 58, 77| (see also [38, 135]). Moreover, it has been recently presented
in |30] a C! virtual element method on polyhedral meshes. The numerical solution by virtual
elements of incompressible flow problems (Stokes, Brinkman, Stokes-Darcy and Navier—Stokes
equations) have been recently developed in the following references [17, 34, 35, 41, 59, 64, 76,
84,98, 117, 118, 154, 164].

According to the above discussion, in the present contribution, we are interested in keep-
ing on exploring the flexibility of the VEM to solve the QGE equations with applications in
oceanic circulation. More precisely, we propose and analyze a conforming C! virtual element
discretization of lowest order, which is based on the virtual space introduced in [18], to solve the
quasi-geostrophic equations in stream-function formulation. We observe that the functions, in
the virtual space, have continuous trace and the trace of the gradient is also continuous; thus,
the method delivers a conforming solution. We write a discrete formulation by using projector
operators to construct discrete version of the local bilinear forms and trilinear form along with
a discrete load term.

We prove well-posedness of the discrete virtual formulation by using the Banach fixed-point
Theorem and assuming that the data is in a certain sense small enough. We write error estimates
in H2-norm for the stream-function under rather mild assumptions on the polygonal meshes.
Finally, we point out that, the present analysis for the stationary QGE equations constitutes
a stepping-stone towards others related problems. For instance, two-layer quasi-geostrophic
model [130] or time dependent QGE equations [96].

This chapter is organized as follows: In Section 2.2, we recall the quasi-geostrophic equations
in terms of the stream-function and introduce the corresponding variational formulation for the
system. In Section 2.3, we present the C'-virtual element discretization of the variational
formulation. Under the assumption of small data, we prove the existence and uniqueness of the
discrete problem by using the Banach fixed-point Theorem. In Section 2.4, we establish error
estimates for the stream-function. Four numerical tests that allow us to assess the convergence
properties of the method and to check whether the experimental rates of convergence agree
with the theoretical ones are reported in Section 2.5.

2.2 The model problem

We consider the steady one-layer quasi-geostrophic equations in stream-function formulation
(for further details, see for instance [95]):

Re 'A%) — curl ¢ - V(AY) —Ro !0,y =Ro™'f  inQ,

b — B —0 on I (2.2.1)

where 1 is the stream-function of the velocity field u, i.e., u = curl ¢, and f is the source
term. The constants Re and Ro denote the Reynolds and Rossby numbers, respectively. These
parameters are defined by (see [95, 104, 106]):

UL U

Re := A, and Ro = 5L
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where the coefficient /3 is the coefficient multiplying the y-coordinate in the S-plane (see [156]),
L is the characteristic length scale, U is the characteristic velocity scale and Ay is the eddy
viscosity parametrization.

In order to write a weak formulation of problem (2.2.1), we consider the following space:

X:={¢peH(Q):¢=0,0=0 on T}.
We endow the space X with the following norm
[9llx == [dl20 Vo e X.

Now, we multiply the corresponding equation by a test function ¢ € X, integrate twice by

parts in €2 and using the boundary conditions, we obtain the following variational problem:
find ¥ € X such that:

Re ' A(¥, ¢) + B(¥;1,¢) —Ro'C(¢,¢) =Ro'F(¢) Vo€ X, (2.2.2)

where A, C' : X x X — R are bilinear forms, B : X x X x X — R is a trilinear form and
F : X — R is a linear functional, defined as follows:

A, @) = / D%y : D%¢ Vi, ¢ € X, (2.2.3)
Q

B(C v, ¢) = /QAC curl ¢ - Vo V¢, 0 € X, (2.2.4)

Clw.0) = [ 000 V6 € X, (2.2.5)
Q

- /Qf¢ Vo € X. (2.2.6)

Using integration by part and the boundary conditions, it is easy to see that the bilinear
form C(-,) defined in (2.2.5) satisfies,

Now, we introduce the following bilinear form Cyey : X X X — R:

Caen (1, 0) := —Cw ) — —c (¢,0) = /axw— —/ D00 W deEX.  (2.2.7)

Clearly
Cskew(wu ¢) - C(wa ¢) \V/?/f; ¢ € X.

Thus, according to the above equality, we rewrite the variational problem (2.2.2) in the
following equivalent weak form: find ¢ € X such that:

Re A1), 6) + B(th;1h,6) — Ro Cuew (19, 6) = Ro'F(9) Vg € X. (2.2.8)

Remark 2.2.1. We observe that our VEM discretization will be based on the above weak form.
In particular, to discretize the skew-symmetric bilinear form Cuyew(-,-) (cf. (2.2.7)), we con-
struct a simple discrete form that preserves the skew-symmetry property at discrete level, which
makes the analysis of the method simpler. For instance, we observe that the analysis of exis-
tence and uniqueness of the discrete problem and the convergence analysis of the method (see
Sections 2.3.3 and 2.4, respectively) are facilitated using the skew-symmetric bilinear form.
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The following lemma establishes some properties for the forms defined in (2.2.3), (2.2.4),
(2.2.6) and (2.2.7), these properties will play an important role in the forthcoming sections.

Lemma 2.2.1. There exist positive constants 63, 61 such that

A, 9) < 1Yl x]I8llx Vi, ¢ € X, (2.2.9)

A6, 0) > llol Vo € X, (2.2.10)

1B(G v, )l < Crll¢xlvlxlgllx V¢, ¢ € X, (2.2.11)

B(¢ v, ¢) = —=B(¢; 0,¢) V¢, v, ¢ € X, (2.2.12)

B((;¢,0) =0 V¢, ¢ € X, (2.2.13)

[Caen (1, 0)] < Ch [l x [18l1x Vi, ¢ € X, (2.2.14)

Cokew(0,9) =0 Vo e X, (2.2.15)

[F(9)] < [ fll-2ellollx Vo € X. (2.2.16)

Proof. The proof follows standard arguments. n

In order to prove the well-posedness of problem (2.2.8), we will employ a fixed-point strategy.
Indeed, given ¢ € X, we define the following operator

T: X —X
(—T(0) =9,
where ¢ is the solution of the following linear problem: find ¢ € X such that
Q(p,¢) =Ro™'F(¢) Vo€ X, (2.2.17)

where the bilinear form Qc(-,-) is given by

QC(@: ¢) = ReilA(gpu ¢) + B(Ca 2 gb) - Roilcskew((p? Qb)

We note that ¢ € X is a solution of problem (2.2.8) if and only if T'(1)) = 1. Thus, to prove
the well-posedness of (2.2.8), we will prove that 7" has a unique fixed point by means of the
classical Banach fixed-point Theorem.

The following lemma establishes that the bilinear form Q(-,-) is bounded and elliptic.
Thus, operator T is well-defined.

Lemma 2.2.2. There exists a positive constant Cg such that

Qc(p,9) < Colvllxllollx Ve ¢ € X,

and

Qc(p,¢) > Re '|o|lx Vo e X.
Proof. The result follows from Lemma 2.2.1. =

By a direct application of Lax-Milgram Theorem we conclude that problem (2.2.17) has
a unique solution. In addition, from the definition of the continuous problem (cf. (2.2.17)),
(2.2.13), (2.2.15) and (2.2.16), the following continuous dependence holds

lelx <Ro™'Re [[f]|-20.
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Thus, operator T is well-defined.
In what follows, we will prove that 7' is a contraction mapping. Let § := Ro 'Rel| f|| _2.0,
then we consider the following bounded set

Ni={oe X :|olx <o},

and using the previous lemma, we have that T(N) C N.
The following lemma establishes that T is a contraction mapping and hence, according to
the Banach fixed-point Theorem, it has a unique fixed point in .

Lemma 2.2.3. Assume that R
CpRo™ 'Re?|| f|| 2.0 < 1. (2.2.18)

Then, T is a contraction mapping in N.

Proof. Let (1,11, o, %y € N, such that
T(¢G) = and T(C2) = v,

then from the definition of the operator T'(-), we have

Re_1A(¢17 ¢) + B(Clv ¢1a ¢) - Ro_lcskew(wla ¢) = RO_IF(Qb) VQb S X, (2219)
Re_lA(w% ¢) + B(CQv ¢2a Qb) - Ro_loskew(w% Qb) = RO_IF(QS) VQb € X. (2220)

Subtracting (2.2.20) from (2.2.19), we get

Re 'A(1 — 2, @) + [B(Ci; ¥1, ¢) — B(Cos b2, ¢)] — Ro™ Cokenw (Y1 — Y2, 9) =0 Vo € X.

Now, taking ¢ := 1)1 — 1) in the above equation, we have that Cyew(+, ) vanishes (cf. (2.2.15)).
Thus, we obtain

Re ' A1y — o, 1 — P2) + B(C; 91, 1 — tha) — B(Co; tha, by — 1b2) = 0.

Then, by adding and subtracting 1), in the second term, we have

0 =Re ™ Ay — tha, 1 — ) + B(C; ¥ — W, 1 — ¥2) + B(Cr; o, 1 — 1))
— B(Co; 12,91 — 1)
=Re A1 — o, 1 — ¥2) + B((i5 02,11 — ¥2) — B((as tha, 1 — 1)
=Re " A(1 — Yo, 1 — th) + B(C1 — G2, 11 — o),

where we have used (2.2.13). Therefore
Re™ A1y — 4,1 — 3) = —B(C1 — Go; 92, ¢ — o),
by using (2.2.10), (2.2.11) and the Cauchy-Schwarz inequality, we obtain

Re™![lvr — dallk < ChllvallxllG — Gllxllvr — valx,
then, using the fact that 1y € N, we get

ltn — o]l x < CpRe (Ro"Re|fl|-2,0) G — Gllx = CsRo "Re’[|f | -2.0/lG = Gallx-

Therefore, according to assumption (2.2.18), we obtain that 7" is a contraction mapping, which
concludes the proof. O
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The following result follows from Lemma 2.2.3 and the Banach fixed-point Theorem.

Theorem 2.2.1. If R
A= Cg Re’Ro™ | f]| 2.0 < 1,

there exists a unique 1 € N solution to problem (2.2.8), which satisfies the following continuous
dependence

I¥]lx < ReRo™[[f]|-24.

In what follows, we will assume that the source term satisfies f € L%(Q2). Now, we state an
additional regularity result for the solution of problem (2.2.8). The proof of this result can be
found in [111, Lemma 2.3| (see also [49]).

Theorem 2.2.2. Let p € N be the unique solution of problem (2.2.8). Then, there exist
s € (1/2,1] and C > 0, such that ¢ € H**(Q) and

[¥]l21s.0 < C[[fllog-

2.3 The virtual element scheme

In the present section, we will introduce a C'-virtual element discretization for the numerical
approximation of (2.2.8). The discrete method will be based on the virtual space introduced
in [18] for the Cahn-Hilliard equation.

We begin with some notations and assumptions to construct the projectors on polynomial
spaces, which are going to be used to build a conforming virtual space of X and to construct
the respective discrete bilinear forms, the discrete trilinear form and the discrete functional.
Finally, we prove existence and uniqueness of the discrete formulation by using the Banach
fixed-point Theorem.

Now, we have the standard mesh assumptions. Let {7}},., be a sequence of decompositions
of 2 into general polygonal elements K. We will denote by hx the diameter of the element K
and by h the maximum of the diameters of all the elements of the mesh, i.e.,

h := max hg.
KeTh

We denote by Ng the number of vertices of K, by e a generic edge of 7;, and for all e € 0K,
we define a unit normal vector n% that points outside of K and a unit tangent vector t%.

2.3.1 Virtual spaces and polynomial projections

Now, for every polygon K € T,, we introduce the following preliminary augmented local
virtual space (see [18]):

Xu(K) = {¢n € H*(K) : A%¢y, € Py(K), ¢nlox € C°(OK), ¢ple € P3(e) Ve € OK,
Vonlox € C*(OK), One dnle € Pi(e) Ve € 0K},

Next, for a given ¢, € )?h(K), we introduce two sets Oy and O5 of linear operators from
the local virtual space X, (K) into R:
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e O : contains linear operators evaluating ¢, at the Ny vertices of K;
e O, : contains linear operators evaluating V¢, at the Nk vertices of K.

Now, we decompose the bilinear form A(-,-) as follows:

Alp,9) =Y A(p,0)  Vp,0€X, (2.3.1)
KeTy,
where
A(p0) = [ DPpiD% Voo € HE(K). (2.3.2)
K

In a similar way, we can decompose the forms B(+;-,-) and Cyyew (-, ), with the following local
forms:

BX(Ci b, 6) ;:/KAgcurw-w Ve, 6 € I (K). (2.3.3)
Cliew (¥, 0) = %/Kaxw—%/lﬁxqw Vo, ¢ € H2(K). (2.3.4)

Projection operators. The next step is to build some projector operators from the
local virtual space onto Py(K) to construct the discrete version of the local bilinear forms
and trilinear form along with the discrete load term. The first projector will be constructed
by using the local bilinear form (2.3.2). Indeed, for each polygon K, we define the projector
2 : X, (K) = Pyo(K) C X,(K) as follows: for each ¢, € X,(K), IIR¢), € Py(K) is the
solution of the following local problem (on each polygon K):

AR (g én.q) = A" (¢n,q) Vg € Po(K),

(MR én, @)k = ((Pn,9)x  Yq € Py(K),
where ((¢n, ¢n))k is defined as follows:
Nk
((en, o))k == Z@h(Vz’)%(Vz‘) Yion, o € C°(OK),
i=1

with v;, 1 < i < Nk, being the vertices of K.
The following result establishes that the projector 11 is computable using of the sets Oy
and Oy (see [18]).

Lemma 2.3.1. The operator 11%. : X,(K) — Po(K) is emplicitly computable for every ¢, €
Xn(K), using only the information of the linear operators Oy and Os.

Next, we introduce, for each K € 7Ty, our local enhanced virtual space as follows:
Xn(K) = {on € Xu(K) : (6 — R, qlox =0, Vg € Po(K)}.

In the space X} (K'), we have the following properties (for further details, see [18]):

e the sets of linear operators Oy and O5 constitutes a set of degrees of freedom;
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o 112 : X, (K) — Py(K) is well-defined and it is computable using the information the of
degrees of freedom O, and O,.

Now, for each K € €, we consider the L?-projection onto Py(K), defined as follows: for
each ¢ € L*(K),I1%¢ € Py(K) is the unique function such that

/qH?db:/ g0 Vg e Py(K). (2.3.5)
K K

We observe that, using the definition of the local space Xj(K), for each ¢ € X,(K), the
polynomial function [1%¢ € Py(K) is fully computable. In fact, due to the particular property
appearing in the definition of space X, (K), the right hand side in (2.3.5) is computable using
[12.¢. Actually, it is easy to check that on the space X, (K) the projectors I1%¢ and I12¢ are
the same operator. In fact:

[ o= [ amio  voe (). (2.3.6)
K K

Now, we will consider the following projection onto the polynomial space P;(K): we define
I1l : L?*(K) — P1(K), for each v € L?(K) by

/H}(V-q—/v-q Vq € Py (K). (2.3.7)
K K

Using integration by parts, it is easy to see that for any ¢, € X,(K), the vector functions
IT}.curl ¢, € Py(K) and IIL. V¢, € Py(K) can be explicitly computed from the degrees of
freedom O; and Os. In fact, for all K € T, and for all ¢, € X, (K), using integration by parts
on the right hand side of (2.3.7) (with curl ¢, instead of v), we have

[curton-a= [ oota [ o) vaePux)
K K oK

—rotq [ ()~ [ aufa-t)  Vae i)
K OK

where we have used the definition of 1% ¢;, and (2.3.6). The first term on the right hand side
above depends only on I12¢, and this depends only on the values of the degrees of freedom
(see Lemma 2.3.1). The second term is an integral on the boundary of the element K, which
is fully computable. Similarly, we have that II}-V¢y, is fully computable from the degrees of
freedom.

Also, we note that for each ¢, € X, (K) the projection function I1%Ag;, € Py(K) is com-
putable using the degrees of freedom O; and Os. Indeed, for each ¢, € X, (K) and for all

qo € Py(K') we have
/ 0o 19 Ay, 2/ qo Aoy, =/ qo On®n,
K K OK

from the equality above with have that

1

0 A¢p, = —
AT

an¢h7

where |K| denotes the area of polygon K.
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Now, by combining the local spaces X,,(K) and incorporating the homogeneous Dirichlet
boundary conditions, we define the global virtual space for the numerical approximation of
(2.2.8): for every decomposition 7, of €2 into polygons K, we define

X, = {¢h € X: Qbh‘K < Xh(K)} .
The degrees of freedom for X, are:
e OG; : pointwise values of ¢, on all vertices of T, excluding the vertices on I';

e OG, : pointwise values of V¢, on all vertices of 7}, excluding the vertices on I'.

2.3.2 Construction of the discrete forms

In this section, we will construct the discrete version of the continuous bilinear forms, the
trilinear form and the right hand side, using the projection operators introduced in Section 2.3.1.
First, let S5 (-, ) be any symmetric positive definite bilinear form to be chosen as to satisfy:

co A (dn, dn) < SE (dn, dn) < cr AN (dn, ) Voén € Xy (K), with ¢y, =0, (2.3.8)

with ¢g and ¢; positive constants independent of h and K.
Now, using the projector operator ITY. and the bilinear form SLK(-,-), we introduce the
following computable discrete local bilinear form:

AP (1, fp) = AN (TR, TR dn) + S5 (Y — TR, dn — R n), (2.3.9)

as an approximation of the continuous bilinear form A% (- -) (cf. (2.3.1)).
We choose the following representation for the bilinear form SE (-, ) satisfying (2.3.8) (see
[18, 135]):

N

S (Wn, on) = 0ty > [Un(vi)on(vi) + B3, VUn(vi) - Vou(vi)]  Vibn, o € Xn(K),

1

=

-
I

where vy,..., vy, are the vertices of the element K, h, corresponds to the maximum diameter
of the elements with v; as a vertex. The parameter of is a multiplicative factor to take into
account the h-scaling, for instance, in the numerical test we have taken o3 as the trace of the
matrix AX (TR, TTR-¢y) (cf. (2.3.9)).

For the approximation of the local trilinear form B¥(-;-,-) (cf. (2.3.3)), we consider the

following computable form:

B"E(Ci b, o) = / [(MYAG) (Mycurl ¢y)] - IV VG, n, dn € Xn(K). (2.3.10)

K

For the approximation of the bilinear form C%

row (55 7) (cf. (2.3.4)), we consider the skew-
symmetric discrete local form:

1

ChE (Yn, dn) = %/}(Hi(am 5 pn, — §/Kﬂi<wh 12 (8, 6n).- (2.3.11)

We recall that all the above forms are computable using only the degrees of freedom O,
and 02.
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Then, we define the global bilinear forms and trilinear form as follows:

Ah : Xh X Xh — R, (d}hyébh Z AhK 1/%; Qbh) (2312)
KeT,
B": X) x Xpp x X = R, B"(Guitbn, &) = > B (Guithn. én). (2.3.13)
KeTy,
Chow : Xn X Xp o R, Ch (b, ) = > Clitv (n, dn), (2.3.14)
KeT,
for all ¢,,vn, ¢ € Xp. Moreover, we observe that the forms B"(+;-,-) and C%_ (-,-) can be

extended to the whole X.

The next step consists in constructing a computable approximation of the right hand side
(2.2.6), using the sets of degrees of freedom O; and O2. With this aim, for each element K we
define the following term:

FME () 3:/ 115 f én E/ fIdn  Vou € Xu(K),
K K

where we have used the L?-projection operator (2.3.5). Thus, we introduce the following ap-
proximation for the functional defined in (2.2.6):

= > F"N(gn) Vo € Xy (2.3.15)
KeTh

The following result establishes the classical consistency and stability properties for the
discrete local bilinear forms.

Proposition 2.3.1. The local bilinear forms AX(-,-), AWK(..), CK_(.,-) and CIE (-,-), de-

S skew

fined in (2.3.2), (2.3.9), (2.3.4) and (2.3.11), respectively, on each element K satisfies the
following properties:

e Consistency: for all h > 0 and for oll K € Ty, we have that

A" (g, é1) = A% (q, ¢n) Vg e Py(K),  Von € Xy(K), (2.3.16)
Clm (@ 81) = Cho(@,0n) Vg ePy(K), Vo, € Xu(K), (2.3.17)

o Stability and boundedness: There exist positive constants ay and aw, independent of h and
K, such that:

ar A (¢, dn) < A" (on, dn) < A% (gn, ¢n)  Vou € Xu(K). (2.3.18)

Proof. The proof follows basically from the definition of the bilinear forms. We omit further
details and we refer to [18, 27]. O

The following lemma, which can be seen as the discrete version of Lemma 2.2.1, establishes
additional properties for the discrete forms.
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Lemma 2.3.2. There exist positive constants C/’B\h, 52 and C1, independent of h, such that the
forms defined in (2.3.12)-(2.3.15) satisfies the following properties:

|A™(n, dn)| < aa [[tnl x| onllx Yion, on € Xn, (2.3.19)
A (Gn, 1) > o [l onllx Yon € Xn, (2.3.20)
B" (G n, dn) < Con | Cullx l19om | x b x Y ton, dn € X, (2.3.21)
B"(Cu; ¢n, én) = 0, VCh, b € Xn, (2.3.22)
CT o (n dn)| < Co [[onll x|l x Vi, on € X, (2.3.23)
Chowr (01, 81) = 0, Von € X, (2.3.24)
[F™(¢n)] < Cull fllocllénllx Ve, € X (2.3.25)

Proof. Properties (2.3.19) and (2.3.20) follows from (2.3.18) and the ellipticity of the bilinear
form AX(-,-). To prove property (2.3.21), we use the definition of the trilinear form B"(;-, ")
(cf. (2.3.13)) and Holder inequality, we have

B G tn ) = > /K [(II%AG,) (IMicurl ¢y)] - T Ve,

KeTh

<Y TS AG o i T ccur] g, | [T Von |1 ) -
KeT,

Using the continuity of the operator 1% with respect to the L?*-norm and the continuity of the
operator ITk with respect to the L*-norm (see [35]), we have

Bh(Ch§¢ha¢h) <C Z ||ACh||0,K||C111“1 @/)h||L4(K)||V¢h||L4(K)-

KETh
Now, applying the Holder inequality (for sequences), we obtain

B G n) < O 30 1861) (X leurl vnlia) ' (3 196 lae)

KeTy, KeTy, KeTy,
< C|AGloellcurl ¢p|[Lao) [V dnllL@)-

Then, by Sobolev embedding theorem, it holds that

B"(Ch; tny d1) < Conl|Callx 14l x 1 dnl

where @ is a constant independent of h.
Finally, (2.3.22)-(2.3.25) follows from the definition of the corresponding forms. We conclude
the proof.
O

2.3.3 Discrete problem and fixed-point strategy

In this section, we will write the discrete VEM formulation to solve the quasi-geostrophic
equations presented in (2.2.8). Our scheme will be based on the discrete forms and the results
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introduced in the previous section. Then, we will analyze a point-fixed strategy to establish
the existence and uniqueness of the discrete virtual scheme.
The discrete problem reads as follows: find ¢, € X}, such that

Re™ A" (4n, dn) + B"(n; ¢n, o) — Ro™ Cliy (n, ) = Ro 1 F™(¢n) Vo € Xp, (2.3.26)
where A"(-,-) and C%_ (-,-) are the discrete bilinear forms defined in (2.3.12) and (2.3.14),

skew

respectively, B"(+; -, -) is the discrete trilinear form defined in (2.3.13), and F"(-) is the functional
introduced in (2.3.15).

In order to prove well-posedness of problem (2.3.26), we are going to use, as in the continuous
case, a fixed-point strategy. Indeed, given (}, € X}, we define the following operator

™ : X, — X,
Ch — T"(Ch) = Ui,
where 1, is the solution of the following linear problem: find v, € X} such that

Q¢ (¥n, on) = Ro™ F™(¢n) Vo € X, (2.3.27)
where the bilinear form Q, (-, -) is given by

Qe (s ¢n) := Re ™ A" (¢, ¢n) + B™(Cns ¥n, 1) — Ro™ Cliau (Un, d1).
The following lemma establishes that the operator T" is well-defined.

Lemma 2.3.3. Given (, € Xy, there exists a unique 1y, € X, such that T"(¢y) = .

Proof. We are going to use the Lax-Milgram Theorem to prove that problem (2.3.27) is well-
posed. Indeed, using the properties (2.3.19), (2.3.21) and (2.3.23), we have that Q, (-,-) is
bounded with a positive constant independent of h. On the other hand, for each ¢, € Xj,
using (2.3.22) and (2.3.24), we have

Q¢ (61, 6n) = Re™ A" (¢y, 1) + B"(Cri b1, 1) — Ro™" Cliery (01, 1)
= Re " A" (¢, ¢n)
> Re ™ au || dnl%,
where (2.3.20) has been used in the last inequality. Thus, by a direct application of the Lax-
Milgram Theorem, we conclude that problem (2.3.27) has a unique solution ¢, € X;. More-

over, from the definition of the discrete problem (cf. (2.3.27)), properties (2.3.22), (2.3.24)
and (2.3.25), the following estimate holds

lénllx < Crar! Ro™'Re || fllog.
Therefore, operator 7" is well-defined. n
Now, we introduce the following set
Ni:={on € Xi 1 ||onllx < R},

where R := Cia;' Ro 'Re ||f]lo.o- As an immediate consequence of the previous lemma, we
have that T"(N},) € N,. Note that our discrete virtual scheme (2.3.26) is well-posed if only if
operator T" has a unique fixed point in Nj,.

The following lemma establishes that under some assumption on the data, the operator 7"
is a contraction mapping in Nj,.



22 Chapter 2. A C' VEM for the SQGE of the ocean

Lemma 2.3.4. Assume that -
CthlRO_lRe2HfH0,Q <

af

1. (2.3.28)

Then, T" is a contraction mapping in Ny.
Proof. Let }, 1}, ¢2, 42 € Ny, such that T"((}) = ¢} and T"(¢?) = 17, then from the definition
of the operator T"(-), we have
Re™"A"(yy,, ¢n) + B"(Chs ¥p, o) — Ro™ Clhe (U, dn) = Ro T F"(¢y) Yoy, € Ny, (2.3.29)
Re™ A" (¢, ¢n) + B" (G ¥k, 0n) — Ro™ ' Clie (U, 81) = Ro™ F™ (@) Vo € Ny (2.3.30)

Subtracting (2.3.30) from (2.3.29), due to the properties of the bilinear forms A"(-,-) and
Ch (-,-), we have that

skew

Re A" (¢ — vp, on) + [B"(Chi n, dn) — B (G, on)] — Ro™ Cliee (W1 — ¥, 01) = 0,

for all ¢, € Nj,. Now, taking ¢, := ¥} — 9? in the above equality, we have that C (- ")
vanishes (cf. (2.3.24)). Thus, we obtain

Re™ A" (¢y, — Wi, vy, — i) + B"(Gys ns ¥y — ¥) — B (G v, by, — ¥3) = 0.
Then, adding and subtracting 17 in the second term of the left hand above, we get
0 =Re A4y, — i, by, — ¥3) + B (G ¥n — Wi, n — i) + BM(Gs 3 ¥y, — 1)
= B"(Gis iy hn — ¥7)
=Re™ A" (¢, — Ui, vy, — ¥R) + B (Gis v, ¥ — ¥i) — B (G v, vy — 7))
=Re™ A" (¢, — Up, vy, — i) + B"(G = Gl vy — 7).
where we have used (2.3.22). Then, we have
Re™ A"y, — Ui, v — i) = —B" (G — Gy ¥k, Uy — ¥3),
then applying the Cauchy-Schwarz inequality, (2.3.20) and (2.3.21), we obtain
Re™ |ty — il < CnllplxlGn — Gllx o — ¥illx,
using the fact that 17 € NV}, we obtain
CpnCiRo™'Re’| f o
2

1

1o — ¥illx < 16 — Gillx-

Thus, according to assumption (2.3.28), we have that 7" is a contraction mapping. The proof
is complete. O

The following result is a direct consequence of Lemma 2.3.4 and the Banach fixed-point
Theorem.

Theorem 2.3.1. If

~ —-1n .2
Ay = CprCiRo QRe | £llo. <1, (2.3.31)
aq

there exists a unique 1, € N, solution to problem (2.3.26), which satisfies the following con-
tinuous dependence

ClRo_lRe Hf”()’Q

1¥n]lx <
aq
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2.4 Convergence analysis

In this section, we will analyze the convergence properties of the discrete virtual element
scheme presented in Section 2.3.3. In the forthcoming analysis, we will make the following
assumptions for the polygonal mesh 7j: there exists a real number C'7; > 0 such that, for every
h and every K € 7T; we have

Al: K €7, is star-shaped with respect to every point of a ball of radius C7, hg;
A2 : the ratio between the shortest edge and the diameter hx of K is larger than C7;.

We introduce the following broken Hf-seminorm, for each integer ¢ > 0:
1/2
Dleni= (3 10lEk)
KeTy,

which is well-defined for every ¢ € L2(2) such that ¢|x € HY(K) for all polygon K € Tj,.
The following approximation results will play a relevant role in our error analysis (see
[18, 38, 54]).

Proposition 2.4.1. Assume A2 is satisfied, then there exists a constant C > 0, such that for
every ¢ € HO(K), there exists ¢, € Po(K), such that

’¢_¢ﬂ’€,K§Ch§;£’¢’5,K7 0§6§376207177[6]7

where [§] denotes the largest integer equal to or smaller than 6 € R.

Proposition 2.4.2. Assume that A1 — A2 are satisfied. Then, for each ¢ € H?*T5(Q), with
s € (1/2,1] there exist ¢; € Xp, and C > 0, independent of h, such that

6 — orllx < Ch%|Plays.a-

Proof. The proof follows repeating the arguments from [38, Proposition 4.2| (see also |18,
Proposition 3.1]). O

We will also use the following approximation property (see [35]):

Lemma 2.4.1. Let K € Ty, and d,p two real numbers such that 0 < 6 < 1 and 1 < p < oo.
Then, there exists a constant C' > 0, independent of hy, such that for every v € Wg(K)

Now, we start with the following bound.

Proposition 2.4.3. Let f € L*(Q) and let F(-) and F"(-) be the functionals defined in (2.2.6)
and (2.3.15), respectively. Then, we have the following estimate:

IF — Fhlly, o= sup (00 — (@)

PrEXn H¢hl|X
dnF#

< CP*| fllog-
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Proof. The proof follows from the definition of the functionals F(-) and F"(-), together with
approximation properties of the projector IT%. O

The next step is to establish two technical results for the trilinear forms B(-;-,-) and
B"(+;-,+). We begin with the following lemma.

Lemma 2.4.2. Let v € H*™5(Q) N X, with s € (1/2,1]. Then for all w € X, we have that
|B(v;v,w) = B"(viv,w)| < Ch*([vllssq + ol x)[v]lz+sallwlx.

Proof. Let v € H*™(Q2)N X and w € X, then adding and subtracting suitable terms and using
orthogonality properties of the projectors I1% and ITk, we have that

B(v;v,w) — B"(viv,w) = ) / [Aveurlv- Vo — (IT%Av TTeurl v) - T, V]
KeT;, Y K
= Z / Avcurlv - (Vw — I, V)
KeT, VK
+ Z / (AU (Curl v — Ij.curl U)) I Vw (2.4.1)
KeT, Y K

+ Z / ((Av — H%Av) T} -curl v) I} Vw
KeTy, K
= Tl + TQ + T3.

We will bound the terms in the last equality. Applying Holder inequality and approximation
properties of projector ITk (see Lemma 2.4.1), we bound the term T} as follows

Ty <> CllA||La leurl v]|us o | Vi — T Vo x

KeTy

< Y CllA | lleurl v o Ch V)
KeTy,

then using Holder inequality (for sequences) and the fact that H*(Q2) < L*(Q), we obtain that

1 1 1
1< Ch(0 Y 1Auliia) (D0 el vl ) (D lwbx)’
KeTy,

KeTy, KeTy
< Ol Av] s lleurl vl ] x (24.2)
< Chl|Av[sql[curl vl oflw| x
< Chljvll24sellvflivsellw] x-
Now, for the term 75, we use again Holder inequality, approximation properties of projector

IT}; in Sobolev spaces (see Lemma 2.4.1), and continuity of IT} with respect Li-norm (see [35]),
to get

T, < Y CllAv]oxlcurl v — ccurl o[y [T Vel s i,
KeTy,

< Y CllAv]och®leurl v]lws ) [ Vel
KeTy,
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Now, using again Holder inequality (for sequences) and Sobolev embeddings H*(Q) — L4(Q)
and H!™(Q2) — W5(Q), we obtain that

r<on( Y HAvHﬁ,K);( 3 chrlvuévi(m)‘l‘( > va|’i4(K)>i

KeTy KeTy, KeTy,
< ChS”A’lJHQQ‘CUI‘l U|WZ(Q) |’vaL4(Q) (243)

< Ch?|jv]|x|curl v|i450

|w]x

< CP?|vllx[ollzesellwlx-

We continue with the term 75. We use Hélder inequality and the continuity of the projector
I}, with respect L*-norm and the approximation property for projector I1%, it holds that

T3 < Y CllAv — T Avllo k| [T ccurl o[ | T Vel L i)
KeT,

< Y OB Av|s klleurl vl | Vw L.
KeT,

By employing the Holder inequality (for sequences) and Sobolev embedding theorem, we have
that

Ty < Ch?||v][24s 0fv]14s.0llw]x- (2.4.4)
Finally, the proof follows from the estimates (2.4.2), (2.4.3), (2.4.4) and (2.4.1). O

Now, we state the second technical result.

Lemma 2.4.3. For all (,p, ¢ € X we have that

|B(@50,6) — B*((;¢,0)| < T ([IClIx[18]1x + Il = ¢ + @llx(lellx + 11€]1x)) 18] x-

Proof. Let (,p,¢ € X. Then, adding and subtracting suitable terms, using the trilineality of
the form B"(;-,-) and the property (2.3.22), we have

B"(p;0,¢) — B"((: ¢, ¢) = B"(0;0 = ¢, 0) + B"(¢ — (¢, ¢)
= B"p;0 = (+¢,0) — B"g;0,¢) + B" (0 — C+ ¢;¢, ) — B"(¢: ¢, ¢)
= B"g;0—(+¢,0) + B (¢ — C+ ¢;¢,0) — B"(¢:¢, 9).

Thus, the proof follows from (2.3.21). H
The following theorem provides the rate of convergence of our virtual element scheme.

Theorem 2.4.1. Let ¢ and ¢y, be the unique solutions of problem (2.2.8) and problem (2.3.26),
respectively. Then, there exists a positive constant C, independent of h, such that

||2/} - whHX S C hsg(f7 Reu R07 /\7 )\h>7

where s € (1/2,1] is such that ¢ € H***(Q)NX (c¢f. Theorem 2.2.2) and G is a suitable function
independent of h.
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Proof. Let ¢y € X, be the interpolant of ¢, such that Proposition 2.4.2 holds true. We set
Wy, = wh - w[. ThUS,
[ = nllx < [l¥ = drllx + flwallx- (2.4.5)

The bound of first term on the right hand side above follows from Proposition 2.4.2. Thus, we
bound the second term. In virtue to the properties (2.3.20), (2.3.21) and (2.3.22), we have that

Re 'ay||wn|% < Re ' A" (wy, wy) = Re A" (v, wy) — Re ™ A" (47, wp,)
= Re ' A"y, wy) + B"(Wp; wi, wy) — Ro™*CE  (wn, wy) — Re A" (4r, wy,)
= [Re " A" (¢n, wn) + B" (n; ns wi) — Ro™ Cliy, (W, )]

— B"(n; 1, wp) + Ro™ ' Ch L (W1, wy) — Re AP (vr, wy,)

= Ro ' F"(wy,) — Re " A"(r,wp,) — B"(Yn; br,wy) + Ro™ ' Ch . (1, wy),

where we have used the definition of the discrete scheme (2.3.26). Now, adding and subtracting
the term Ro ™' F(w;) on the right hand side above, and using the definition of the continuous
problem (cf. (2.2.8)), we get

Re oy [Jwy % < Ro™" [F*(wp) — F(wy)] + Re ™" [A(v, wy) — A" (41, wy)]
+ [B(¥; 9, wy) — B"(vn; br, wy)] + Ro™ ! [Coken (¥, w1) — Clh (801, wh) ]
< CRo™||F — F¥lx [lwnlx + Re ™" [A(,wn) — A" (4, wp)] (2.4.6)
+ [B; ¢, wi) — B"(Wn; 1, wp)] + Ro™ [Coew (¥, wn) — Clhay (W01, w1)]
= Tp+Ty+Tp+1Tc.
Now, we bound each term on the right hand side above. First, the term TF can be easily
bounded by using Proposition 2.4.3. Then, we estimate the term T4 as follows. Adding and

subtracting ¢, € Py(K) such that Proposition 2.4.1 holds true, and using the consistency of
the bilinear form A™X(- ) (cf. (2.3.16)), we have that

Ty =Re Z [AR () — thr, wi) — AR (W — o, wh)]
KeT, (2.4.7)

< CRe '1¥||¢||ass.0llwnl x,

where we have used the continuity of the bilinear form A™¥(.,.), Propositions 2.4.1 and 2.4.2
and Cauchy-Schwarz inequality. Analogously, the term T can be estimated by using (2.3.17),
as follows

TC - R‘O_l Z [Cgﬁew(w - d]ﬂ) wh) - Os}i;eliz(wI - Yﬁm ’U)h)
= (2.4.8)

< CRo™ 17 [[¢la+s.0llwnll x.
The next step is to bound the term 7. We proceed as follows

[B(th; v, wn) — B"(n; ¥n, wa) | + [B" (Ui o, wi) — B (s ¥r, wp)]
= [B(w; 9, wn) — B"(¢n; ¥, wn)| + [B" (4hn; wh, wh)] (2.4.9)
B(w; ¢7wh) - Bh(i/Jh; ¢h,wh),

T’s
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where we have used (2.3.22) to obtain the last equality. Now, we add and subtract the term
B"(ap; 4, wy,), then we use Lemmas 2.4.2 and 2.4.3 to obtain that

Ty = [B(w; v, wy) — B"(¢; 0, wy)] + [B"(W; ¢, wp) — B (¥n; ¥n, wp)]
< CR ([l x + [Yllso) [¥llarsallwnllx (2.4.10)
+ Cpn ([[Ynlx[wnllx + CR3[[Yllars ol x + [[¥nllx)) [lwnl x,

where we have used that w;, = v, — v¢; and then Proposition 2.4.2.
Therefore, from (2.4.6), using (2.4.7)-(2.4.10), we obtain

Re™ oy [lwnllx < CRo™ R?||fllog + C(Re™ + Ro™H)h°[[¢]a450
+ CR([[V]lx + 1Y)l 1s.a)llP]l24s.0
+ Cpnl[Yn xlfwrllx + Cpr CRE(|Y0 ]l x + 190l x) | 215,0-

From the inequality above, we get

Re lay (1 — CprReai[|vnllx)[lwnllx < CRo™h?||f]log
+ CRe™ + Ro N¢]|zssg + C R ([ llx + 19150 ¢]2rs0 (2.4.11)
+ Cn CR (|9l x + [1nll )19 ]|2450-

Next, from (2.3.31) and the fact that ¢, € N, it holds that

o Cyn Cy Re? Ro ™
- Corllnllx oy Cpr CR R loa gy (2.4.12)
Re "oy g

Therefore, from (2.4.11), (2.4.12) and Theorem 2.3.1, we get
CReRo ™ R?|flloo  CRe(Re '+ Ro )h*

w < S
[[wnlx < ar (1= Ay) o (1= M) [¥ 12450
C Re h?

_wnen . S 5

ap (1 - )\h)(||¢||X [P ll4s.2) 19]l2450 1)

Cpn C Re b

Cph & REN . 5

o (L) Il A O e

< Ch*G(f; Re,Ro, A\, A\p),

where we have also used Theorem 2.2.2. Finally, the proof follows from (2.4.5), (2.4.13) and
Proposition 2.4.2. O

2.5 Numerical results

In this section, we present four numerical experiments, to test the behavior of the pro-
posed VEM discretization (2.3.26) and in order to verify the theoretical results established in
Section 2.4.

We have tested the virtual scheme by using different families of polygonal meshes (cf. Fig-
ure 2.1). For reasons of brevity, we do not report the results obtained with all meshes for all
test problems. The non reported results are in accordance with the ones shown.
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e 7,1 Sequence of CVT (Centroidal Voronoi Tessellation);
e 772 Trapezoidal meshes;
e 7;2: Distorted concave thombic quadrilaterals;

e 7% Uniform triangular meshes.

Figure 2.1: Sample meshes. 7;!, 7,2, T2 and 7} (from left to right).

In order to test the convergence of the proposed scheme, we introduce the following com-
putable quantities:

ez(w> = W - H]]D(wh‘i,ha 1= Oa 17 2.

We will compute experimental rates of convergence for each individual error as follows:

. log(ei(v)/ei(v))
l“z(w) - log(h/h’) )

where h, b’ denote two consecutive mesh sizes with their respective errors e; and e!.

For each test to solve the resulting nonlinear system, we used the Newton method with
maximum 10 iterations, a tolerance Tol= le — 8 and we take ¢) = 0 as an initial guess;
moreover, we have taken the Reynolds number as Re = 1.667 and the Rossby number as
Ro = le — 4 (see [95]). Finally, we consider 2 := (0,1)? as computational domain in the first
three examples and an L-shaped domain in the last example.

i=0,1,2.

2.5.1 Test 1: Smooth solution

In this numerical test, we take the load term in such a way that the analytical solution of
the quasi-geostrophic equations (2.2.1) is given by:

Y(z,y) = % sin? (72) sin?(7y)e

:r:2+y2

We report in Table 2.1 the convergence history of our virtual scheme on the meshes 7;'. The
table includes the number of degrees of freedom (dofs), the discrete errors e;(1)), the convergence
rates r;(¢) for i = 0,1,2, and the number of iterations (iter) used by the method of Newton to
achieve tolerance at each level of refinement.
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dofs h  eo(v)  ro(?) e1(v) ri(¢) ea(v)  ro(t)) iter
294  1/8 4.214341e-2  —  1.338770e-1 3.676844e-1  — 3
1371 1/16 1.100219e-2 1.937 4.993576e-2 1.422 1.924777e-1 0.933
5796 1/32 2.329921e-3 2.239 1.229111e-2 2.022 9.401329e-2 1.033
23874 1/64 5.576055e-4 2.062 3.109190e-3 1.983 4.633333e-2 1.020
96855 1/128 1.089853e-4 2.355 7.895256e-4 1.977 2.308295e-2 1.005

W W w w

Table 2.1: Test 1. Errors and experimental rates for the stream-function 1, using the meshes

T,

We observe that the asymptotic O(h) decay of the discrete error es(1) observed for the
stream-function confirms the optimal convergence predicted by Theorem 2.4.1. It can be also
seen that the errors eg(¢)) and e;(¢)) decay much faster. However, we have not proved the higher
order in these cases. The table also shows that a maximum of four iterations are required for
the Newton method.

Sample approximate solutions generated with the virtual method on a coarse mesh are
portrayed in Figure 2.2.

0 01 02 03 04 05 06 07 08 09 1 0 01 02 03 04 05 06 07 08 09 1

Figure 2.2: Test 1. Exact and approximate solutions ¢ and 1, the streamlines of 1, and the
velocity field uy, := curl vy, (top left, top right, bottom left, bottom right, respectively), using
the VEM method (2.3.26) with 7;}, h = 1/32.
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2.5.2 Test 2: Solution with western boundary layer

In this numerical example, we solve the quasi-geostrophic equations (2.2.1) by taking the
load term in such a way that the analytical solution is given by:

1
(207)2

Y(z,y) = (1—z)(1—e) sin(7ry))2 :

We observe that in this case the solution has a boundary layer on the left hand side.

In Table 2.2 we report the convergence history of our virtual scheme on the meshes T2
The table includes the number of degrees of freedom (dofs), the discrete errors e;(1), and the
convergence rates r;(¢) for i = 0,1,2. Once again, the expected order of convergence for the
discrete errors ey (1)) is reached.

dofs h eo(v)  ro(?) e1(v) ri(¢) eo(v)  ro(t)) iter
147 1/8 7.600646e-5 —  1.549666e-3 —  2.834095¢-2 — 3
675 1/16 1.61607%-5 2.233 4.688010e-4 1.724 1.390167e-2 1.027
2883 1/32 2.976015e-6 2.441 1.110449e-4 2.077 7.254667e-3 0.938
11907  1/64 6.202604e-7 2.262 2.706962e-5 2.036 3.804474e-3 0.931
48387 1/128 1.451048e-7 2.095 6.730940e-6 2.007 1.938996e-3 0.972

W DN NN

Table 2.2: Test 2. Errors and experimental rates for the stream-function v, using the meshes

T.2.

In addition, in Figure 2.3 we display the stream-function (exact and numerical solution),
the streamlines of v, and the approximate velocity field.

2.5.3 Test 3: Solution with vortex in the top-right corner of the do-
main

In this numerical example, we solve the quasi-geostrophic equations (2.2.1) by taking the
load term in such a way that the analytical solution is given by:

U(x,y) = L(1 — CoS (M)) <1 — Co8 (M>>

42 efr — 1 eftz — 1

In this experiment it is expected to observe a counter-clockwise rotating vortex with center
(%, ye) which depends on the values of Ry and Rs. The coordinates of the center of the vortex

are given by:
ro= og () = Taeg ()
c Rl g 2 yC_ R2 g 2 :

In particular, we have chosen Ry = R, = 4, then the center of the vortex is located at the
top-right corner of the domain. More precisely, (z.,y.) ~ (0.83125,0.83125).

We proceed to study the accuracy of our VEM scheme by solving the discrete problem
on a sequence of polygonal meshes 7. Once again, we compute the discrete errors e;(1) for
t = 0,1,2. The error history is collected in Table 2.3, which indicates that the scheme, as
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01 02 03 04 05 06 07 08 09 1 0 01 02 03 04 05 06 07 08 09 1

Figure 2.3: Test 2. Exact and approximate solutions 1, 1y, the streamlines of 1, and the
velocity field vy, := curl ¢, and (top left, top right, bottom left, bottom right, respectively)
using the VEM method (2.3.26) with 7,2, h = 1/64.

dofs

h eo(¢) ro(%U) 61(¢) r1(¢) 92(1/))

ro(1)) iter

123
231
2211
9027
36483

1/4 1.153577e-2  —  2.116982e-1 —  4.17475e+0
1/8 9.705065e-3 0.249 1.328881e-1 0.671 3.21654e+0
1/16 2.444361e-3 1.989 4.017754e-2 1.725 1.72708e+0
1/32 4.937103e-4 2.307 9.985092e-3 2.008 8.549397e-1
1/64 1.118995e-4 2.141 2.479913e-3 2.009 4.275213e-1

0.376
0.897
1.014
0.999

4

e WWw

Table 2.3: Test 3. Errors and experimental rates for the stream-function 1, using the meshes

T2

predicted by the theory, converges with an O(h) in the discrete error ey (1)).

shows that a maximum of four iterations are required for the Newton method.

The table also

In Figure 2.4 we display the stream-function (exact and numerical solution) and the ap-
proximate velocity field.
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Figure 2.4: Test 3. Exact and approximate solutions 1, ¥, (top) and the velocity field u;, :=
curl ¢, (bottom) using the VEM method (2.3.26) with T2, h = 1/32.

2.5.4 Test 4: L-shaped domain

Finally, we solve the quasi-geostrophic equations (2.2.1) on an L-shape domain:  :=
(—1,1)%\ ([0,1) x (—1,0]). We take the right hand side term and non-homogeneous Dirichlet
boundary conditions in such a way that the exact solution in polar coordinates is given by

Y(r,0) = r*3sin <§9>

The analytical solution contains a singularity at the re-entrant corner of €); here, we have
Y € H3/3=2(Q) for all ¢ > 0.

Table 2.4 shows the errors and experimental convergence rates of our virtual scheme on the
meshes 7;*. Since the analytical solution is singular, we are not going to obtain linear (in H?)
and quadratic (in H' and L?) order of convergences as in the previous examples. More precisely,
according to the regularity of ¢, we expect an order of convergence in H? as O(h?/?).

It can be seen from Table 2.4 that the expected order of convergence for the discrete errors
e2(1)) is obtained. We also observe that the errors eo(1) and e;(¢)) decay much faster.

Finally, Figure 2.5 shows the stream-function (exact and numerical solution).
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dofs h eo®)  xo(y)  e()  ri(¥)  ea(d) () iter
483 1/8 2.985997e-4 — 6.677776e-3 — 2.614276¢-1 4
2115 1/16 1.448822¢-4 1.043 2.446762¢-3 1.448 1.643765e-1 (0.669
8835 1/32 6.100395e-5 1.247 9.069247e-4 1.431 1.040009e-1 0.660
36099 1/64 2.538614e-5 1.264 3.411994e-4 1.410 6.577727e-2 0.660
145923 1/128 1.063002e-5 1.255 1.316359e-4 1.374 4.155790e-2 (0.662

= e e

Table 2.4: Test 4. Errors and experimental rates for the stream-function 1, using the meshes
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Figure 2.5: Test 4. Exact and approximate solutions 1, ¢y, (left and right, respectively) using
the VEM method (2.3.26) with 7,2, h = 1/16.



Chapter 3

Virtual element methods for a
stream-function formulation of the Oseen
equations

3.1 Introduction

The numerical solution of the time-dependent Navier—Stokes equations is still a great chal-
lenge of computational fluid dynamics. Using time discretization and linearization, the gener-
alized Oseen problem arises as an important subproblem. Different formulation and discretiza-
tions have been proposed and analyzed in the last years for the Oseen equations; see for instance
[8, 13, 23, 24, 25, 52, 61, 78, 73, 94| and the references therein.

The aim of the present chapter is to introduce and analyze conforming virtual element meth-
ods (VEM) to solve the Oseen equations on polygonal simply connected domains, formulated in
terms of the stream-function of the velocity field. We observe that it corresponds to a fourth-
order PDE. Thus, a conforming discretization requires globally C! continuity. Among the
important advantages of VEM, in this work, we will exploit the possibility of easily implement
global discrete spaces of H*(Q) (see [58, 77]) to solve the Oseen problem.

The VEM introduced in [27] is a recent generalization of the finite element method that
allows to use general polygonal /polyhedral meshes. The method has been applied successfully
in a large range of problems in fluid mechanics; see for instance |17, 34, 35, 41, 59, 60, 64, 84,
98, 117, 118, 154, 164], where Stokes, Brinkman, Stokes-Darcy, Navier—Stokes and Boussinesq
equations have been developed.

Recently in [133], it has been presented a C' VEM method for the Brinkman problem
written in term of the stream-function. In this contribution, we will extend these results to the
generalized Oseen problem, where an additional term is presented in the momentum equation.
There are several advantages of utilizing the stream-function formulation for fluid flow problems:
there is only one scalar variable, the incompressible condition is satisfied automatically, the
stream-function is one of the most useful tools in flow visualization. Moreover, further variables
of interest, such as the velocity, the fluid vorticity and the pressure, can be easily obtained from
the VEM discrete stream-function. In fact, we will show that we compute the velocity by
a simple postprocess, and we recover the fluid pressure by solving a primal formulation of a
second order elliptic problem with right hand side coming from the discrete stream-function
(see [133, 115]). We note that there are other procedures to recover fluid pressure. For instance,

34
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in 71| has been presented an algorithm for pressure recovery which is based on a mixed finite
element discretization with inf-sup stable pairs. In addition, we will propose a novel strategy
to recover the fluid vorticity, which is key in several applications [89, 46, 12|, from the virtual
element stream-function solution with the help of a proper polynomial projector.

This chapter is concerned with a non-symmetric VEM discretization of arbitrary order
k > 2 for the Oseen equations formulated in terms of the stream-function, which will be
analyzed using the Lax-Milgram Theorem and we will show well-posedness provided a CFL-
type condition is satisfied (cf. (3.3.22)). Under standard assumptions on the polygonal meshes,
we establish optimal order error estimates in H2. Moreover, we show that velocity, vorticity
and pressure can be recovered (cf. Section 3.5). We also derive error estimates for these fields.
In particular, under the assumptions that the family of polygonal meshes is quasi-uniform and
that the continuous solutions are sufficiently smooth (pressure and stream-function), we write
an error estimate in H' for the fluid pressure. In summary, the advantages of the proposed
VEM methods are: the use of general polygonal meshes and the possibility to recover further
variables of interest for fluid flow problems.

The rest of the chapter is organized as follows: In Section 3.2, we introduce the variational
formulation of the Oseen problem in terms of the stream-function. We prove existence and
uniqueness of this formulation by using the Lax-Milgram Theorem. In Section 3.3, we present
the virtual element discretization of arbitrary order £ > 2. We also prove the existence and
uniqueness of the discrete formulation. In Section 3.4, we obtain error estimates for the stream-
function in H2. In Section 3.5, we recover other important variables for fluid flow problems from
the discrete stream-function, such as the velocity u, the fluid vorticity w and the fluid pressure p.
In Section 3.6, we report a set of numerical examples which allows us to assess the performance
of the proposed method.

3.2 Model problem

The incompressible Oseen equations are given by the following set of equations and boundary
conditions:

—vAu+ (Vu)g+yu+Vp="~f in €,
diva=0 in €,
u=20 on I,

(P, D)oo =0,

(3.2.1)

where u : Q — R? is the velocity field, p : © — R is the pressure field, f : O — R? is
the external body force, v > 0 the kinematic viscosity, 3 € WL (Q) with div 3 = 0 a given
convective velocity field, and v € L*°(Q2) a given scalar function, respectively. We assume that
there exists 7o such that v(x) > 7 > 0 for almost all x € Q.

The standard velocity-pressure variational formulation of the Oseen problem reads as fol-
lows: find (u,p) € H{(Q) x L3(2), such that

V/Vu:Vv—l—/(Vu)B-v—l—/’)/U-V—/pdiVV:/f'V Vv € Hy(Q),
Q Q Q Q Q
/qdivu:O Vg € L3 (%),
Q
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where L3(Q) := {q € L*(Q) : (¢,1)00 =0} .
Let us introduce the space of divergence-free functions

Vi={veH|Q):divv=0 in Q}.

Since €2 is a simply connected domain, a well known result states that a vector function
v € V if and only if there exists a scalar function ¢ € H?(2), which is called stream-function,
such that
v = curl ¢ € H;(Q).

The function ¢ is defined up to a constant (see [103]). Thus, we consider the following space
X:={peH(Q):p=0p=0 on I},
where 0, denotes the normal derivative. We endow X with the norm
lellx = lelaa Ve e X

Then, choosing ¢ € X the stream-function of the velocity field u € V (i.e. u = curlv), we
write the following equivalent weak formulation of the Oseen problem: find ¢» € X such that

y/ D%y D2¢+/(chrlw)ﬂ-curl¢+/fycurlw~curl¢: / f-curlg Vo€ X,
Q Q Q Q
We rewrite this variational problem as follows: find ¢ € X such that

Oy, ¢) :==vAY,d) + B(¢,9) + C(,¢) = F(¢) Ve X, (3.2.2)

where A : X x X - R, B: X xX — Rand C : X x X — R are the bilinear forms and
F : X — R is a linear functional, defined as follows:

A, ¢) = /QD%; D%, Vi, € X, (3.2.3)
B(1, ¢) = /Q(chrlw)ﬁ-curlqﬁ Vi, 6 € X, (3.2.4)
C(p, @) = /Q'ycurlw-curlgb Vi, ¢ € X, (3.2.5)

F(¢) = /Qf-curl(zb Vo € X (3.2.6)

The following lemma establishes some properties for the bilinear forms and the linear func-
tional previously defined.

Lemma 3.2.1. There exist positive constants Cg and C., such that the forms defined in (3.2.3)-
(3.2.6) satisfies the following properties:

Al o)l < llellxllollx Vi, ¢ € X,
A(g,¢) > ||¢l1% Vo € X,
1B, 9)| < Callellxollx Vo, ¢ € X,
Cle,8) < Cyllellxligllx Vo, ¢ € X,
C(6,8) > 1|62 ¢ Vo € X,

[F ()] < 1 Fll-20llollx Vo € X.
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As a consequence of Lemma 3.2.1, the fact that div 3 = 0, and the Lax-Milgram Theorem,
we state the solvability of the continuous problem (3.2.2).

Theorem 3.2.1. There exists a unique v € X solution to problem (3.2.2), which satisfies the
following continuous dependence on the data

[¥]lx < CllF[ -2,
where C s a positive constant.

Remark 3.2.1. In this chapter, we will require an additional regularity for the unique solution
of problem (3.2.2). More precisely, in what follows we assume that there exists s > 1/2 such
that ¢ € H***(Q). This additional reqularity will play an important role in the error analysis
(cf. Sections 3.4 and 3.5).

The goal of this chapter is to propose a conforming C'-VEM of arbitrary order to solve
problem (3.2.2) and to prove that the method is optimally convergent. In addition, we will
propose simple post-processes from the discrete stream-function to recover the velocity, pressure
and vorticity fields.

3.3 Virtual element method

In this section, we will write a C!-virtual element discretization for the numerical approxima-
tion of problem (3.2.2). We start by introducing some notations and assumptions to construct
a discrete virtual subspace X7, for arbitrary order k > 2 and to write the discrete bilinear
forms and the discrete linear functional to propose the discrete scheme.

Let {Tn},-, be a sequence of decompositions of €2 into general polygonal elements K. Let
hx denote the diameter of the element K and A the maximum of the diameters of all the
elements of the mesh, i.e., h := maxge7, hig. In what follows, we denote by Nk the number of
vertices of K, by v; a generic vertex of K, with i € {1,..., N} and by e a generic edge of 7.
In addition for all e, we denote by h. the length of edge and we define a unit normal vector nf%
that points outside of K. Also, we denote by z, and xx the midpoint of e and the baricenter
of K, respectively.

For the theoretical analysis, we will consider the following assumptions: there exists a real
number C7, > 0 such that, for every h and every K € T,

A1l: the ratio between the shortest edge and the diameter hy of K is larger than C7;;

A2: K is star-shaped with respect to every point of a ball of radius C'7; hg.

3.3.1 Virtual spaces and polynomial projections operator

We will denote by Mj(K) the set of scaled monomials defined on each polygon K:

M (K) = {(X ;;K)a : |al :ﬁ}, (3.3.1)
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where for a non-negative multi-index a = (ay, as), we set |a| := a; + ay and x* = z{'x5?, with
x = (71,22). Now, we define My(K) := ., Mj(K) =: {mj}?il as a basis of Px(K), where
dr = dim(P(K)). Also we consider the set of the scaled monomials defined on each edge e:

2 ?
T— T, [T — X, T — Te
o= {552 (52 (52

Now, for any integer k > 2 and for every polygon K € 7T, we introduce the following
preliminary local virtual space [77]:

XH(K) = {¢n € HY(K) : A%y, € Py_s(K), ¢nlox € C°(OK), ¢l € Py(e) Ve € OK,
Vonlox € CY(OK), One dnle € Pole) Ve € 0K},
where 7 := max{3,k} and o := k — 1.

Next, for a given ¢y € )N(,{L“(K), we introduce the following sets of linear operators from the
local virtual space XF(K) into R:

e D, : contains linear operators evaluating ¢, at the Nk vertices of K;

e D, : contains linear operators evaluating hy,V¢;, at the Ng vertices of

1
e Dj : for r > 3, the moments w /q(()qﬁh(g) d¢ VqeM,_4(e), Vedgee;

e D, : for @ > 1, the moments /q(()@ni{@(g) d¢ Vqe M, s(e), Vedgee;

1
e Dj: for k > 4, the moments W /Kq(x)gzﬁh(x) dx Vq e My_4(K), Vpolygon K,

where h,, corresponds to the average of the diameters corresponding to the elements with v;
as a vertex.
Now, we decompose into local contributions the bilinear forms A(-,-), B(-,-) and C(-,-):

Alp.) = 3 A%p0) = Y [ DD Vpoe,

KeTy KeTy,

Ble.o) = Y B¥(e.0)i= 3 [ (Vowlp)B-curlo Vo€ X,

KeTy KeTy,

Cle, )= > CX(p,0) = > /churlso-curm Vo, 0 € X.

KeTy, KeTy,

In what follows, we are going to build discrete version of the local bilinear forms. With this
aim, for each polygon K, we define the following projector:

AP XF(K) — Pu(K) € XP(K),

o — TPy,
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where H’;(’D(/ﬁh is the solution of the local problems:

AR dn, q) = A¥(¢n,q) Vg € Po(K),

5 60 = dn, VIR 6, = Vo,

—

with (-) is defined as follows:

Ng

g 1

©Yp = N—K ngh(vl) VQOh < C’O(@K), (332)
=1

and v;, 1 <1i < Nk, are the vertices of K.
The following result establishes that the projector H’;;D is fully computable using the sets
D; — D5 (see [77]).

Lemma 3.3.1. The operator 5P XF(K) — Pu(K) is explicitly computable for every ¢y, €
XF(K), using only the information of the linear operators Dy — Ds.

For each K € T;, our local virtual space is given by:
XE(K) = {% eXMK): [ aMPo = [ qion Vo emy (K)L Mz_2<K>} . (333)
K K

where M;_,(K) and M;_,(K) are scaled monomials of degree k — 3 and k — 2, respectively (see
(3.3.1)), with the convention that M*,(K) = () (for further details, see [77]).

It is easy to observe that Py(K) C XF(K) C X/(K). Moreover, the sets of linear operators
D; — Dj constitutes a set of degrees of freedom for X} (K) (see [77]). Additionally, we note that
the condition appearing in the definition of the local space XF(K') will be useful to construct an

L2-projection which will be employed to build the discrete bilinear forms. In fact, we consider
the L?(K)-projection onto P, o(K). For each ¢ € L*(K), 1526 € P;,_»(K) satisfies

/chb:/Kq(H’;‘qu) Vg € Pp_s(K).

The following lemma establishes that 152 is computable on XF(K). The proof follows
from the definition of the local virtual space and the set of degrees of freedom.

Lemma 3.3.2. The operator 1152 : XF(K) — P_o(K) is explicitly computable for each
on € XF(K), using only the information of the degrees freedom Dy — Ds.

Now, for k£ > 2, we will consider the following projection onto the polynomial space Py_(K):
we define TTI%! : L2(K) — P;_1(K), for each v € L?(K) by

/ q-v= / q- I 'v Vg € Py (K). (3.3.4)
K K

Using integration by parts, it is easy to see that for any ¢, € XF(K), the vector function
I curl ¢, € P, (K) can be explicitly computed from the degrees of freedom Dy — D5 (see
[133]).

Now, we will establish a stability property of the projector defined above. To achieve this,
we recall the following inverse inequality for polynomials on polygons, which hold true under
assumption A2 (see [33, Remark 6.1]).
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Lemma 3.3.3. If the assumption A2 is satisfied, then there exists C > 0, independent of h,
such that B
gl < Chidllallox Vg € Py(K), €>0.

Thus, using Lemma 3.3.3 the projector H'}“{1 satisfies the following stability property: let
K € Tp, then for each ¢, € XF(K), there exists Cy > 0, independent to K and h, such that

T curl @)1 0 < Cl @l (3.3.5)

Now, for £ > 2, we introduce an additional projector which will be used to write the virtual
1
scheme; we define IT%Y : XF(K) — Pu(K) C XF(K) for each ¢, € XF(K) as the solution
of the following local problem:

/ curl H];;VLgbh -curlg = / curl ¢y, - curl g Vg € Pp(K),
K K

o1
R -~
I ¢ = én,

—

where (-) has been defined in (3.3.2). The following result states that this operator is fully
computable using the sets D1 — Dy (see [133, Lemma 3.3]).

Lemma 3.3.4. The operator H%’VL : XFH(K) — PL(K) C XF(K) is explicitly computable for
each ¢y, € XF(K), using only the information of the set of degrees freedom Dy — Ds.

Now, we introduce the global virtual space to approximate the solution of the problem
(3.2.2). For every decomposition T, of  into polygons K, we define

Xy o= {on€X: ¢nlx € XJ(K)}.

3.3.2 Construction of the local and global discrete forms

In this section, we will construct the discrete version of the continuous local bilinear forms
and the right hand side, using the projection operators introduced in Section 3.3.1.

First, let S5 (-,-) and SE ;(-,-) be any symmetric positive definite bilinear forms to be
chosen as to satisfy:

coA™ (b, o) < S5 (on, dn) < 1t AX(pn, b1) Vo € XF(K), with Hl}}’D% =0,
CX (b, 1) < SE oy (0n, ) < csCX (on, ) Ve € XF(K), with 115V ¢, =0,

with ¢, c1,co and c3 positive constants independent of h and K. We will introduce bilinear
forms SK(-,-) and SE , (-,+) satisfying (3.3.6) in Section 3.6.

curl

(3.3.6)

For all ¢, ¢, € XF(K) we now define the local discrete bilinear forms
AP (4, 1) o= AR (TP, TP ) + SE (vn — Tyn, ¢ — T3P 6y,), (3.3.7)
B"E (4, ) = /K (VI 'curl ) B - I 'eurl ¢y, (3.3.8)
C" " (4n, ¢n) = /K v I eurl ¢y, - T 'eurl ¢, (3.3.9)

+ Sglrl <wh - Hllg(’VLwha ¢h - HII%VL Qbh) .
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Next, for all ¢y, ¢, € XF, we define the global discrete bilinear form as follows:

AP XE X XS R, A () = > AP (g, ), (3.3.10)
KeTh

B": Xfx X =R, By, dy) =Y B" (g, en), (3.3.11)
KeTy

Ch: XFx XfF =R, CMUn dn) = Y C" (4hy, én). (3.3.12)
KeTy,

We note that the bilinear form B"(-,-) is immediately extendable to the continuous space
X.

The following result establishes the usual consistency and stability properties for the discrete
local forms AME (- -) and C™¥(-,-). The proof follows standard arguments in the VEM literature
(see [18, 27, 28]). We omit further details.

Proposition 3.3.1. The local bilinear form AWK (. ), CME(. .) defined in (3.3.7) and (3.3.9)
respectively, on each element K satisfies

e Consistency: for all h > 0 and for all K € Ty, we have that
AV (g, 0n) = A%(q,0n) Vo €PR(K),  Vou € Xj(K).

o Stability and boundedness: There exist positive constants «;,1 = 0,1,2,3 independent of
K, such that:

oA (fn, dn) < A (dn, o) < A% (on, dn) Vo, € Xj(K),
aC™ (o, o) < O (dn, dn) < asCX (dn, dn) Vo € X(K).
The next step consists in constructing a computable approximation of the linear functional

defined in (3.2.6). With this aim, we define, for each element K, the following computable
term:

FME(gy) = / Mt - curl ¢, = / f I tcurl ¢, Vo, € XF(K).
K K
Thus, we consider the following approximation of the functional defined in (3.2.6):
F'(gn) ==Y F"M(¢n)  Vou € X (3.3.13)
KeTy

The following lemma establishes some properties for the discrete forms defined in (3.3.10),
(3.3.11), (3.3.12) and (3.3.13).

Lemma 3.3.5. There exist positive constants Cyn,Cpgn, Cy and Cgn, independent of h, such
that the forms defined in (3.3.10)-(3.3.13) satisfies the following properties:

| A" (Wn, dn)| < Coan [|9onx Nl dn 1 x Vi, dn € XE, (3.3.14)
AP (Gn, 01) > o || onllx Yon € XF, (3.3.15)
|B"(¥n, d1)| < Cpnl[tnl| x| énllx Vb, o € XF, (3.3.16)
C* (yn, 1)| < Co ||9onll x| dnllx Vi, dn € XE, (3.3.17)
C"(dn, dn) = 20| dnl} g Vb, o € XF (3.3.18)
[F"(¢n)] < CpnIfllogllonllx Ve € XF. (3.3.19)
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Proof. The proof of these properties follow standard arguments in the VEM literature (see
|18, 27, 28]). Nevertheless, we will prove the property (3.3.16). Indeed, let 1, ¢, € X}, then
using the definition of the bilinear form B”(-,-) and the Cauchy-Schwarz inequality, we have
that

B (o) < 3

KeTy,

D Bl o) | VT eurl oy lo | T curl g o i
KeTy,

< 1Bl Y [T curl gy kellcurl ¢y o (3.3.20)
KeTh

< Cn|IB]le @) Z [Unl2. k| Onl1 i

KeTn
< Cn|IBlLee @ |¥nll x |0 1,0
< OnGy||Bl|ee @) 1¥nl| x |0l x5

/ (VH’}}_lcurl @bh) B- H’;(_lcurl on
K

IN

where we have used the inequality (3.3.5) and C, > 0 is the constant such that

lonli0 < Collonllx,

which is independent of i and K, for all K € T,. Then, taking Cpn := CnC,l|B||lL) > 0, we
conclude the proof. O

Remark 3.3.1. We observe that using the projector HZ’VL it 1is possible to construct alternative
discrete bilinear forms in (3.3.8) and (3.3.9) More precisely, we can consider the following
computable discrete forms:

BME (4, 1) = /

(chrl H%VLzﬁh) 3 - curl HZ’VL Ons
K

~ 1
CM 5 (n, ) = / yeurl Y gy - curl Y4y, + SE L (v — TRV gy, 6 — TEY " g3,).
K

With these new forms, it is possible to write a different discrete formulation to solve the Oseen
problem. We will test the discrete method derived with these forms in the numerical result
section (see Section 3.6.3).

3.3.3 Discrete formulation

Now we write the discrete formulation by using the discrete forms and employing the results
of the previous sections we establish existence and uniqueness for our discrete scheme.
The virtual element discretization reads as follows: find 1, € X such that

O" Wy, dn) == vA" (b, dn) + B"(Yn, ¢n) + C"(Un, o) = F"(¢n) Von € Xj. (3.3.21)

The following result establishes that the bilinear form O"(-,-) is elliptic.
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Lemma 3.3.6. Let Cy be the constant such that (3.3.5) hold true. Suppose that

02 B 2oo
NIBIE e (@) -1

3.3.22
2vy900in ( )

then there exists & > 0, independent of h, such that
O"on. dn) > allonlx Vo € XF.

Proof. Let ¢, € X\. Then, using (3.3.15), (3.3.18) and (3.3.20) we get

O"(¢n, ¢n) = VA" (¢n, dn) + B"(6n, on) + C"(¢n, 1)

> vaollgnlli — OBl nllx[dnlr.0 + azolénff o
szvuﬁuioo Q Q270
> vaollénlk - —5 = lonllx = 5P lenlia + azlénlia
1181
_ _ (Q)) 2 | 2%, |2
(Voéo 2om70 Pnllx + 5 [
X8I
”(9)) 2
> N i o &
> (vao — =5 ol

CRUBIE <o)

. 20270
is complete. O

where we have used the Young inequality. Then, taking & := vag— > 0, the proof

As a consequence of the previous lemma, we have the following result.

Theorem 3.3.1. Suppose that (3.3.22) holds true. Then, there exists a unique ¢, € Xk
solution to problem (3.3.21) satisfying the following estimate

[¥nllx < Clifflog,
where C s a positive constant independent to h.
Remark 3.3.2. Assumption (3.3.22) holds provided one selects v appropriately. For instance,
when the Oseen system is derived as a time discretisation of Navier—Stokes equations, this

parameter represents the inverse of the timestep. Thus, the aforementioned relation can be
regarded as a CFL-type condition at a discrete level.

3.4 Error analysis

In the present section, we develop an error analysis for the discrete virtual element scheme
presented in Section 3.3. We start with some preliminary results.
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3.4.1 Preliminary results
First, we recall the estimate for the interpolant ¢; € XF of ¢ (see [18, 38]).

Proposition 3.4.1. Assume that A1 and A2 are satisfied. Then, for each ¢ € H°(Q), there
exist ¢; € XF and C > 0, independent of h, such that

|‘¢_¢I||m,ﬂ S Ch(s_m|¢|§,§27 m:071727 2 S 5§ k+17 k Z 2.

Now, invoking the Scott-Dupont Theory (see [54]) for the polynomial approximation, we
have

Proposition 3.4.2. If the assumption A2 is satisfied, then there exists a constant C' > 0, such
that for every ¢ € H2(K), there exists ¢, € Pp(K), k > 0, such that

16 — bulmi < CRE™dls, 0<m<§<k+1,0=0,1,...,[0],
where [8] denoting largest integer equal or smaller than ¢ € R.

We are going to use the following standard approximation property (see [54, 59]):
Lemma 3.4.1. There exists a constant C > 0, independent of hy, such that for all v € H*(K)
v =TIV mx S ChE™ Vs 0<m<d<k, k>1L.

Now, we start with the following bound for the continuous and discrete linear functionals.

Proposition 3.4.3. Let k > 2. Assume that f € L2(Q) such that f|x € H*2(K) for each
K € T,. Let F(-) and F"(-) be the functionals defined in (3.2.6) and (3.3.13), respectively.
Then, we have the following estimate:

|F— F"| := sup |F(¢n) — F"(dn)|

¢h€X}’f ||¢h||X
¢h7ﬁo

< ChF Yo

Since v is a scalar function, the bilinear form C™¥(-,.) does not satisfy the consistency
property. Nevertheless, we have the following auxiliary results which will be useful to prove the
error estimates.

Lemma 3.4.2. Let K € T, and let v be a smooth scalar field defined on K. For any p,q
smooth enough vector fields defined on K, we have
(VP Do — (VI ', I q)o.x <[lvp — I (v p) llo.x la — T alllo.x
+lp = I plloxllva — I (v a)lo.x
+ |17 o=y [P = T ' pllo,x la — T alfo,x-

Proof. The proof follows adding and subtracting suitable terms and using the properties of the
projection H’;(_l (Lemma 3.4.1). We omit further details. H

As an immediate consequence of Lemma 3.4.2, we have the following result.
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Lemma 3.4.3. For all K € T;, and for all vy, ¢y € XJ(K), we have that
C*(on, ¢n) = C™* (on, bn)
< ||y curl o, — IT5 (yeurl @) [|o i ||curl ¢, — TT5 teurl ¢y ||o k¢

Iy curl 6, — T (reurl ) o xlleur] g, — T curl oy o x
+ C, ||curl ¢, — I} curl ¢y ||o x || curl @), — II5 teurl ¢p|o.x
+ SE o (on — T o, o — T ),
where C, > 0 is a constant depending on the function .

For the bilinear forms BX(-,-) and B™¥(.,.), we have the following analogous result.
Lemma 3.4.4. For all K € T;, and for all oy, ¢y € XF(K), we have that

BX(¢n, 1) — B"*(on, é4)
< [[(Veurl ¢;,)8 — 5 [(Veurl ) 8] 0.k ||curl ¢, — IT5 *curl ¢jo x

—+ H/BHL"O(K) ](:url ©Oh — Hl}:{_lcurl gOh‘LKHHI;(_lCllI'l ¢hH0,K'

Proof. Let ¢, ¢n € XF(K). Then, by using the definition of the bilinear forms BX(-,-) and
B™K(...), adding and subtracting suitable terms and using the properties of the projection
5! we have

BX(on, on) — B"E (op, op) = / (Veurl ¢,)8 - (curl ¢y, — H’}}‘lcurl on)
K

+ / (Veurl g, — VITE eurl ¢p,)3 - TT5 curl ¢,
K
= / ((Veurl g,)8 — IT} [(Veurl ¢,) 8]) - (curl ¢y, — IT) curl ¢y,)
K

+ / (Veurl ¢, — VITE curl )3 - TT5 curl ¢,
K
< [(Veurl )8 — ITi[(Veurl ¢,) 8] |lo,x [[curl ¢, — IT  curl ¢y o x
+ |81 ()| curl oy, — Hﬁ{lcurl cph|1,KHH];(_1curl onllox,

where in the last step we have used the Cauchy-Schwarz inequality. O

3.4.2 A priori error estimates
We start with the following result.

Lemma 3.4.5. Suppose that (3.3.22) holds true. Let ¢ and 1y, be the unique solutions of
problem (3.2.2) and problem (3.3.21), respectively. Moreover, suppose that ¢ € H*™(Q), B €
W Q) andy € WIH(Q), for1/2 < s < k—1, then there exists a constant C > 0, independent
of h, such that

1o = nllx < C(I1F = F"| + ¢ = ¥illx + [ = talin + [ = Crlop + B[ ¢]l24s0)
for all 7 € XK and for all ¥, € L2(Q) such that V| € Pp(K) for all polygon K € T,.
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Proof. Let ¢y € XF. We set 6, := 1, — 17, then

1Y = ¥nllx <l —rllx + ll0n]lx- (3.4.1)

We will bound the second term above, we begin by using Lemma 3.3.6, adding and subtract-
ing the term O(1, ;) and using the definition of the continuous and discrete problems (3.2.2)
and (3.3.21), respectively, we have

al|onll% < O™(6n, 6n) = O™y, 0n) — O™ (¢r, b1
= F"(6n) — O"(¢1,0n)
= F'(6) — F(61) + O(t,61) — O" (1, 8,)
= (F"0n) = F@) + Y {vAS(0,00) + B (1, 6) + C* (1, 0,) }

KeTy

= S0 { A @) + B, 6) + M (6 b

KeT,

= (F"(00) = F0n) + D {vAS (@ = v, ) = vA" (g = 0. 61) |

KeTy,

+ 3 B0 — B (w00}

KeTh

(3.4.2)

+ > {CKwa) - (o |

KeTh

= Te+ Y AT+ Y AT} + > {Te},

KeTy, KeTy, KeTy,

where we have added and subtracted ¢, € Px(K) for all K € T, (recall k£ > 2) and we have
used the consistency property of bilinear form A”(-,-). Next, we bound each term on the right
hand side above.

For the term T, we have

Tp < ||F = F|[[lon]x. (3.4.3)

Now, for the term T4, we use the continuity of the bilinear forms AX(.,-) and AME(. ),
together with the triangular inequality to obtain that

Ta = v { AR (=i 80) + AV (s = 6,61 }

< Ol = Yalo i |Onloxc + [01 = Wrl2,s¢[Onlo, k) (3.4.4)
<cC (W B wﬂlZK + |w - w1|2,K) ’5h|2,1(-

For term Tz, we add and subtract BX (31, 61,),

Ts

B (,0n) — B"" (¢r, 0n)

BX (4, 64) — B (¢1,0n) + B* (¢r,6,) — B"* (41, 6n)
B (¢ — 4y, 6,) + (BX(¥r,0n) — B"X (¥r,01))

ClY — Yrl2,x|0n]2,x + (BKWI, On) — Bh’K(?/JI, 5h)) ;

(3.4.5)

IA
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where we have used the continuity of BX(-,-). To bound the second term on the right hand side
above, we use Lemma 3.4.4 along with the stability and approximation properties of projector
IT}*. We have that

BX (4, 6n) — B (11, 01)
< |[(Vecurley;)B — H’;(_l[(chrl ¥1)B]o0,x ||curl 6, — Hl}’(_lcurl Onllo.x

+ H/BHLoo(K)’CLlI‘l w[ — H’;{lcurl wf\LKHH];{_lcurl 5hHD,K

(3.4.6)
< C|[(Veurl ¢;)B — T [(Veurl 1) B [lo.x Picldnl2,x
+ C||BllLee sy |curl ¢y — I curl ¢y g |0n]2,x
= Chg|onlo.x B + C|0n|2.x Eo.
In what follows, we bound the terms E; and Fs. For the term E;, we have
Ey = |[(Veurl ¢;)8 — T [(V (curl ¢;) 8]l x
< [[(Veurl )8 — (Veurl )80k + [|(Veurl )8 — T [(Veurl 4) 8]0,k
+ I [(Veurl ) 8] — T [(Veurl ¢7) 8],k
< [[(Veurl (45— 0))Blo + | (Veurl $)8 — T [(Veurl )] 54

+ [[(Veurl (¢ — 1)) Bllo.x
< 2||BllLeo )| = Yil2x + bV (curl )81k
< 2/ BllLe )80 = Yrl2x + i Bl wasr a0 |V (curl )]s 5
< 2||BllLe )80 = Yrl2, i + i Bl wss s 1Pl 245,

where we have used the approximation and stability properties of projector Hf{l. Now, for the
term FEy, we proceed as follows,

E2 = |C11['1 ’QD] — H];{_lcurl wl|1,K
< |curl ¢y — curl Y|y g + |curl ¢ — H’;;lcurl Y|k
+ ]H’;;lcurl P — Hl;(_lcurl Y1l x

(3.4.8)
< C (W — Yrlox + bPleurl |14 i + [TI5 Peurl (¥ — ¢r)]1 k)
< O([Y = Yrlox + PPlearl Yl k + [¢ — Yrlo k)
< O(|Y = Yrlax + P |Y]24sk),
where, once again, we have used the approximation and stability properties of H’I“{_l.
Inserting (3.4.7) and (3.4.8) into (3.4.6), we obtain
BK(¢I; 5h) - Bh’K<¢]7 6h)
< OBl @il = Yila.re + Rl Bllwss (@) 19l 245.6) 10n] 2,16 (3.4.9)

+ OBl ) (| — Yrlo,x 4+ h¥ || Y|l 246,5) |08 2,5
< O(|1Y = rlax + M|V l245,5)0n] 2,5 -

Now, using estimate (3.4.9), from (3.4.5), we obtain

T < C(|Y — Y1lo,kx + P |[¥|lors,50) [0n |2, - (3.4.10)
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By using Lemma 3.4.3 and repeating analogous arguments as above, we can prove that

Te < C ([ = ¥rlox + [V = ¥alix + B ]|246,5) 108]2,5- (3.4.11)

Then, inserting (3.4.3), (3.4.4), (3.4.10) and (3.4.11) into (3.4.2) and employing the Holder
inequality (for sequences), we obtain

allonllx < C(IF = F* + ¢ = ¥rllx + [ = Yalin + ¢ = Yalon + 2 [W]l2450) . (34.12)
Therefore, the proof follows from (3.4.1) and (3.4.12). O

Theorem 3.4.1. Let k > 2 and £ € L*(Q) such that f|x € H*2(K) for each K € Ty.
Suppose that (3.3.22) holds true. Let 1) and vy, be the unique solutions of problem (3.2.2) and
problem (3.3.21), respectively. We suppose that ¢ € H>T5(Q), B € Wi1(Q) and v € WL(Q),
for 1/2 < s < k — 1, then there exists a constant C' > 0, independent of h, such that

1Y — Ynllx < CR® ([f|k—2n + [|¥]24s.0) -

Proof. The result follows from Lemma 3.4.5 and Propositions 3.4.1, 3.4.2 and 3.4.3. m

3.5 Recovering the velocity, vorticity and pressure fields

The solution of the proposed virtual element method (3.3.21) delivers an approximation of
the stream-function field. We remark that one of the advantages of solving fluid flow problems
through a stream-function formulation is the possibility of computing further variables of in-
terest, such as the velocity u, the fluid pressure p and the fluid vorticity w. In this section, we
will present strategies to recover these three fields. We compute a discrete velocity and discrete
vorticity as a simple postprocess of the computed stream-function using suitable projections,
while to recover the pressure we will write a generalized Poisson problem with data coming
from the computed stream-function and the load term f, then we propose a discrete virtual
scheme, based on the C° enhanced virtual element space from [7] to approximate the pressure.
Also in this section, we will establish error estimates in a broken H'-norm for the velocity and
in the L2-norm for the vorticity. Moreover, under the assumptions that € is a convex domain
and that the family of polygonal meshes 7, is quasi-uniform also we will establish an error
estimate for the pressure in the H'-norm.

3.5.1 Computing the velocity field

We start by noticing that if the stream-function ¢» € X is the unique solution of (3.2.2),
then we have that the velocity u satisfies:

u = curl . (3.5.1)

At the discrete level, we compute a discrete velocity as a post-processing of the computed
stream-function v, € XF as follows: if v, is the unique solution of problem (3.3.21), then the
function

w, = I} curl ¥y, (3.5.2)
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is an approximation of the velocity, where TIF ! is defined in L2(Q) by
(') |x =T (vIx) VK €T,
The following result establishes the accuracy of the discrete velocity:

Theorem 3.5.1. Assume that the hypotheses of Theorem 3.4.1 hold true, then there ezists a
positive constant C', independent of h, such that

lu—upfip < CR° ([fli-2n + [[¢]l2450) -
Proof. From (3.5.1) and (3.5.2), triangular inequality and property (3.3.5), we have

|lu — uhlih = |curly — H’fL_lcurl @Dhﬁ,h

= Z lcurl ¢ — TT% *curl Unls k

KeT,
<(C Z (|curl P — H’;{lcurl ¢|%K + |H’;{1(curl 1) — curl @/}h)ﬁK)
KeTy
< o( > hRlleurl |, + D [T eurl (¢ — wh)I%,K)
KeTy, KeTn
< CR (3 Wl eas + O Y 10— Uil )
KeTy, KeTy,

< Ch*[[Pl3450 + 1Y — ¥allx)
< Ch* (Ifion + [Vl2450) -

where we have used the approximation properties of projector H’;;l and Theorem 3.4.1. The
proof is complete O

3.5.2 Computing the fluid vorticity

Now, we will present an strategy to recover the fluid vorticity w, which is key in several
important applications in fluid mechanics (see [46, 89, 14, 15]). First, we remark that w = rot u,
then using the identity u = curl ¥, we have that

w = rotu = rot(curl ¢) = —Aq. (3.5.3)

We introduce an L2-orthogonal projection which will be used to construct the discrete
vorticity. For k& > 2 and for each K € Ty, we consider the L?-projection onto Py_o(K): for
v € L2(K), 1% %0 € Py_(K) is the unique function such that

(v =152, q)ox =0 Vg € Pp_o(K). (3.5.4)
We have the following approximation result (see [54, 28]).

Proposition 3.5.1. Let H’};‘Q be the projection defined in (3.5.4). Then, the following approz-
imation property hold true: there exists a constant C, independent of hy, such that

v — T8 20|k < ChST™vlsx Yo e HI(K), 0<m<dé<k-—1, k>2.
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Now, we compute a discrete vorticity as follows: if ¢, € X} is the unique solution of (3.3.21),
then the function

wp = I (Ay), (3.5.5)
is an approximation of the vorticity, where we have used the notation
(I 20) | = T 2(0]x) Vo € 12(Q) and VK € 7.

Remark 3.5.1. We observe that for each ¢, € XF(K) the polynomial function T152(Agy) €
P, _o(K), k > 2, is computable using the degrees of freedom Dy — Dsg, where XF(K) is the local
virtual space defined in (3.3.3). Indeed, for each ¢, € X} (K) and for all ¢ € Py_o(K), we have

/KqH'%_Q(AQSh)Z/KqA%:/K%Aq— 8K¢hanKQ+/8annK¢h>

since Aq € Py_4(K), the first integral on the right hand side above is computable using the
output values of the set Ds. Moreover, the boundary terms are fully computable using the
iformation of D1 — Dy.

Now, we can prove the following convergence result for the discrete vorticity.

Theorem 3.5.2. Assume that the hypotheses of Theorem 3.4.1 hold true, then there exists a
positive constant C', independent of h, such that

|w —whlloo < CR° (If|k—2.n + |¥]l2150) -

Proof. From (3.5.3) and (3.5.5), triangular inequality, we have

lo —wrllse = 1A% —IL2(Adn) 5o = > 1A% — I (Av)[If

KeTy,
<O (IIAY — T2 (AY)IF 4 + (T2 (AY — Adhy) |5 )
KeTy,
<C (Z WRIAY|Z  + Y T 2A) — wh>||%,K>
KeTy KeTy

< C®|Yl3400 + 1 — ¥nll%)
< Ch* (‘ﬂz—z,h + ||¢||g+s§z) ;

where we have used Proposition 3.5.1 and Theorem 3.4.1. The proof is complete. ]

3.5.3 Computing the fluid pressure

Next, we will present an strategy to recover the fluid pressure. We will follow recent results
presented in [133] for the Brinkman equations.
We start by considering the following Hilbert space:

H'(Q) := {g e H(Q) : (¢, 1) =0} .
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By using the identity —Au = curl (rot u) — V(divu) in the momentum equation of problem
(3.2.1) and the fact that u = curl ¢, we have that

f=—-—rvAu+ (Vu)B+~yu+Vp
= v (curl (rotu) — V(divu)) + (Vu)8 +yu+ Vp
= vcurl (rot(curl ¢)) + (Vcurl ¢)3 + v curl ¢ + Vp,

where we have used that divu = 0in Q (cf. (3.2.1)). Now using the identity rot(curly) = —A,
the above equality can be rewritten as follows:

Vp=f—ycurly — (Vcurl 9)3 + vcurl (A). (3.5.6)

Then, by testing (3.5.6) with Vg for g € H(Q), we get the following variational problem to
calculate the fluid pressure: find p € H'(Q) such that

Dy(p.q) = G¥(q) Vg€ HY(Q), (3.5.7)
where Dy : H () x H(Q) — R is defined by

Dy (p,q) = / Vp-Vq  Vp,qeH(Q) (3.5.8)
Q
and G : H(Q) — R is the functional defined by:
G¥(q) = / f-Vg—~vcurly -Vg— (Veurly)3-Vg+veurl (Ay)-Vg Vg e HY(Q). (3.5.9)
Q

From now on, we assume that € is a convex domain. As a consequence, we have an additional
regularity for the unique solution of problem (3.2.2). More precisely, we have that ¢ € H?(Q)
and that there exists a positive constant C' such that

[¥]s0 < Clif]lo0-

As an immediate consequence of the above regularity result, the generalized Poincaré in-
equality and the Lax-Milgram Theorem, we have the following result.

Theorem 3.5.3. There exists a unique p € HY(Q) solution of problem (3.5.7). In addition,
there exists C > 0 such that
I2ll1e < Cliflloe-

In what follows, we will propose a lowest order discrete virtual element scheme to approx-
imate the fluid pressure over the same polygonal mesh 7, used to solve the stream-function
discrete formulation (3.3.21). With this aim, we split the bilinear form Dy(-,-), as a contribu-
tion element by element as follows:

Dy(p,q):= Y D(pa) =) /KVp-Vq, Vp,q € H'(Q). (3.5.10)

KeTh KeTh
Now, for each polygon K € 7T, we consider the finite-dimensional space Wh(K ), defined as
Wh(K) = {qh € Hl(K) N CO(OK) : Qh|e € Pl(e) Ve C GK, Aqh € PO(K)} .

The following set of linear operator is defined for all g, € Wh(K )E
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P, : the values of g, at the vertices of K.

We define the projector T} : /I/Iv/h(K) — Pi(K) C Wh(K) for each ¢, € Wh(K) as the
solution of

D& (TY-qn, p1) = DS (qn, p1) Vp, € Py (K),
IY.qn = Gn,

where (/3 is defined in (3.3.2). We note that the operator I} is explicitly computable using the

set Py (see [28]). In addition, using this projection and the definition of W},(K), we introduce
our local virtual space:

Wi(K) = {qh € Wa(K) : (gn — 1%qn, Do.x = o} .

It is easy to observe that Py(K) C W,(K) C W,(K). Moreover, we have that the set Py
constitutes a set of degrees of freedom for W;,(K) and operator I}, is also computable using
only the set Py (see [28]).

Now, we define the following global virtual space to approximate the pressure

Wy, = {Qh € H'(Q) : gulx € Wi(K) VK € 771}

Next, we will continue with the construction of the discrete version of the bilinear form and
the linear functional introduced in (3.5.8) and (3.5.9), respectively. To do that, we consider an
L2-orthogonal projection. For each K € Ty, we define I1% : L?(K) — Py(K) as the unique
function such that

/K(V—H(I)(V)-q:() Vq € Py(K).

It is easy to check that TI%-V¢;, is fully computable, using the degrees of freedom Py, for
each g, € Wj,(K).
Let S&(-,-) be any symmetric positive definite bilinear form such that

csDE (qn, an) < S&(qn, qn) < esDE (qn, qn)  Van € Wi(K), with Iy.q, = 0, (3.5.11)

for some positive constants ¢; and c¢5 independent of K. We will make a choose for S& (-, -)
satisfying (3.5.11) in Section 3.6.
Then, we set

CPnran) == Y DG (pnoan)  Vpn,gn € Wi, (3.5.12)
=

where
DX (pn, qn) 3:/ 1L Vpr TI% Vg, +S& (pn = ph, g — 117 g1 ) Vpr, qn € Wi(K). (3.5.13)
K

The following result gives us consistency and stability properties of the local discrete bilinear
form DZ™(-).

Proposition 3.5.2. The local bilinear forms DE(-,-) and DE*(-,-) defined in (3.5.10) and
(3.5.13), respectively, satisfies the following properties:



3.5. Recovering the velocity, vorticity and pressure fields 53

e Consistency: for each h > 0 and any K € Ty, we have

D& (qn,p1) = DE (qn, ;1) Yp1 € P1(K), Yagn € Wi(K). (3.5.14)

e Stability: there exist positive constants oy, as, independent of hi and K, such that

s DE (g, qn) < D2 (g, qn) < asDE (g, qn)  VYan € Wi(K). (3.5.15)

The next step consists in constructing an approximation of the right hand side (3.5.9),
which depends on the stream-function 1 and the source term f. With this aim, from now on,
we assume that the discrete problem (3.3.21) has been solved with k = 3. So, ¥, € X} is
available and satisfy the error bound presented in Theorem 3.4.1.

Now, for each K € Tj, and each ¢, € Wj(K), we define the following discrete linear func-
tional:

GV B (qp) == / f-T% Vg, — / (VI curlyy,) 8- II% Vg,
K K
— / AIT5.curl oy, - TI% Vg, + V/ curl (ITj (Avy)) - IT% Vap,
K K

where IT% and IIL are the projections defined in (3.3.4) and (3.5.4), for k = 3, respectively.
We have that G¥»¥(.) is fully computable for each K € Ty using the degrees of freedom Pj.
We define the following global (computable) linear functional:

G (gn) = Z G (qn)  Vgn € Wh. (3.5.16)
KeT,

Therefore, we propose the following virtual element discretization of lowest order to recover
the fluid pressure: Given v, € X}, find p, € W), such that

D3 (pnsan) = G (qr) Vg € Wi, (3.5.17)

We observe that by virtue of (3.5.15) the bilinear form DZ(-,-) is bounded. Moreover, the
following result states that it is also elliptic.

Lemma 3.5.1. There exists a constant oy, > 0, independent of h, such that
D (qn, qn) > ay ||Qh||?ﬂ Van € Wh.

Next, we will prove that the linear functional defined in (3.5.16) is bounded. To do that,
we consider the following approximation result (see [54]).

Proposition 3.5.3. If the assumption A2 is satisfied, then there exists a constant C' > 0, such
that for every v € H3(K), there exists v, € P1(K) such that

B B 2
7|0, = s
v = vrllo.x + h|v — vk < Chilv|o k.

Now, we present an interpolation result in the virtual space W, (see [63, 134]).
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Proposition 3.5.4. If the assumptions A1 and A2 are satisfied, then there exists a constant
C > 0, independent of h, such that for each v € H*(Q) there exists v; € Wy, such that

|lv —vrlloq + hlv — v < ChZ‘U‘ZQ.

To prove that the functional G¥#(-) defined in (3.5.16) is bounded we will assume that the
family of polygonal meshes 7, is quasi-uniform. More precisely, from now on, we will assume
the following:

A3: For each h > 0 and for each K € 7Ty, there exists a constant ¢ > 0, independent of h,
such that hx > ch.

The following result establishes that the linear functional G¥#(-) defined in (3.5.16) is
bounded under assumptions A1, A2 and A3.

Lemma 3.5.2. Let ¢ € H*(Q) be the unique solution of problem (3.2.2) and let vy, € X} be the
unique solution of problem (3.3.21). We assume that A1 — A3 are satisfied, then the functional
GYr : W), — R defined in (3.5.16) is bounded.

Proof. The result follows repeating the arguments used in the proof of Proposition 4.20 in
[133]. O

As a consequence of Lemmas 3.5.1, 3.5.2 and the Lax-Milgram Theorem, we have the
following result.

Theorem 3.5.4. The discrete virtual element scheme (3.5.17) admits a unique solution py, €
Wy and there exists C' > 0, independent to h, such that

[Pl < C(Ifllo + [flin) -

In what follows, we will establish the order of convergence of the discrete scheme (3.5.17)
under the assumptions A1— A3 and the additional regularity results p € H?(Q2) and ¢ € H*(Q).
This additional regularity for the stream-function can be attained, for instance, if f € L?(Q)
and € is a rectangular domain (see [57]). We begin with the following result which proof follows
standard arguments in the VEM literature (see |27, 65]).

Proposition 3.5.5. Let p and pp, be the unique solutions of problems (3.5.7) and (3.5.17),
respectively. If the assumptions A1 — A3 are satisfied, then there exists C > 0, independent of
h, such that

P = pullie < C(IGY = G|+ lp — pillie + [p — rlin) -
for all p; € Hy, and for each p, € L2(Q) such that p.|x € P1(K) for all K € Ty, where

P —_ (¥n
|G — G¥r|| := sup 1G¥(gn) — G (qn)|

qh €W}, ||Qh||1,Q
an#0

Now, we will bound the term [|G¥ — G¥*||.
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Proposition 3.5.6. Let f € L2(Q) such that f|x € HY(K) for all K € Ty. Let v € HY(Q) and
Yn € X3 be the unique solutions of the problems (3.2.2) and (3.3.21), respectively. Let G¥(-)
and G¥(-) be the linear functionals defined in (3.5.9) and (3.5.16), respectively. Then, there
exists C' > 0, independent of h, such that

|G — G¥ || < Ch(|[4]lag + 1) -

Proof. Let q;, € W), then using the definition of G¥(-) and G¥#(-), and the Cauchy-Schwarz
inequality, we have

G () — G (gn) < 3

KeTy

>

KeTy,

3

KeTy

T v

KeTy
= T1+T2+T3+T4.

/ f- (Vg — % Vqy)
K

/ (Veurl ¢)8 - Vg, — (VII%curl ¢,)3 - TI% Vg,

/ yeurl ) - Vg, — yIT5curl ¢y, - TI% Vg,

/ curl (AY) - Vg, — curl (I (Ayy)) - % Vagy
K

Now, repeating the arguments used in the proof of Proposition 4.23 of [133], we have that

Ty < Chlf|pllanlle, (3.5.18)
T3 < Ch(||Ynllx + [Elin + [[¥]lae) lan 1o, (3.5.19)

and
Ty < Ch([[¥llag + [£1n) llanllLe- (3.5.20)

Thus, in what follows, we are going to estimate the term 7,. We start by adding and
subtracting suitable terms, and employing the triangular inequality, we have that

T2<Z

KeTy,

2

KeTy
= I+1I.

/ (Veurly)B - (Vg, — % Va,)

(3.5.21)

/ (curl ¢ — I3 curl wh)] B - I1%Vq,

We will bound the terms [ and /7. Indeed, we begin with the term /. By using the properties
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of the operator IT%, we get

ey

/K [(Veurly)B — 11} ((Veurl ¥)B) ] - (Vg, — I Vay)

KeTy,
< (Veurl y)B8 — Iy (Veurl ¢)8) o,k | Van — I Vanllo.x

KeTy,
<C ) hl(Veurl )81kl Vanllox

KeT,, (3.5.22)
1/2 1/2
< Ch (Z |(Veurl wm’iK) (Z ||th||3,K>
KeT, KeTy

< Ch||(Veurl ¥)B|1.algnl.0
< Ch|Bllwy @IV (curl ¥)||L ol 1.0
< Chl[Yflsellanlle-

Now, we continue by estimating I7 (cf. (3.5.21)). By using the approximation properties
of operator IT%, we obtain that

IT:=>Y"

KeTy,

/ [V(curl Y — I3 curl Q/Jh)} B-I1%Vq,
K

< Bl o I V(curl ¢ — T curl yy,)[fo [T Van o,

KeT,
< C|Bllr= Y leurle — I curl )y k|| Vanlo.x
KeT, (3.5.23)
<C > (Jeurly — Mycurl |y x + [Micurl (¥ — ¢n)l1.x) | Vanllox
KeTs
<C Z (hillcurl ¥flyx + Cn |t = plax) [ Vanllox
KeTh

< Ch([f1n + [¥llae)llanllo;

where we have added and subtracted the term IT%curl ¢, we used Lemma 3.3.3, Holder in-
equality and (3.3.5). Then, inserting (3.5.22) and (3.5.23) into (3.5.21), we obtain

Ty < Ch([¥llae + 111n) llgnllo- (3.5.24)
Finally, the proof follows from the estimates (3.5.18)-(3.5.20) and (3.5.24). O

The following theorem provides the rate of convergence of our virtual element scheme
(3.5.17) to recover the fluid pressure. The proof follows from Propositions 3.5.5, 3.5.6, 3.5.3
and 3.5.4.

Theorem 3.5.5. Let f € L2(Q)? such that f|x € HY(K) for all K € T,. Let ¥, ¥y, p and py
be the unique solutions of problems (3.2.2), (3.3.21), (3.5.7) and (3.5.17), respectively. Suppose
that A1 — A3 are satisfied, p € H2(Q) and ¢ € HY(Q). Then, there exists C > 0, independent
of h, such that

P = prllie < Ch([[¥llag + [£n) -
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3.6 Numerical results

In this section, we present three numerical experiments in order to illustrate the practical
performance of the proposed virtual element methods (3.3.21) and (3.5.17) and to confirm the
theoretical results established in previous sections. We will test the method for the cases k = 2
and k = 3 on different polygonal meshes.

Now, we introduce the bilinear forms S&(-,-) and SX ,(-,+) (cf. (2.3.8)) to complete the

virtual element discretization (3.3.21). We take (see [18, 58, 133]):

dof
NK

S5 (Un, dn) 1= 0™ Y dofi(¢n)dofi(¢n) Vb, pn € XF(K),
=1
Ndof

Skt (Y, &) =02~ dofi (¢ )dof;(¢r)  Veou, dn € Xf(K).

=1
where for each polygon K € T, Nt denotes the number of degrees freedom of XF(K) and

dof;, with 1 < 4 < dim(X}(K)), denotes the operator that to each smooth enough function

¢ associates the ith local degree of freedom dof;(¢) and the parameter o€ Uf > ( are a

multiplicative factors to take into account the physical magnitudes and the hA-scaling. On the
other hand, the bilinear form SZ(-,-) (cf. (3.5.11)), is given by (see [27, 134]):

(P, qn) th Vi)an(Vi) Vo, qn € Wi(K).

We have tested the method by using the following families of meshes:
e 7,!: Distorted concave rhombic quadrilaterals;
e 72 Trapezoidal meshes;

e 73: Sequence of CVT (Centroidal Voronoi Tessellation).

Figure 3.1: Sample meshes. 7;!, 7,2 and T;2.



o8 Chapter 3. VEMSs for a stream-function formulation of the Oseen equations

In order to compute the VEM errors, we consider the following computable error quantities.

() = error( H) = (37 o~ IEPunf2) L =012

KeTy

5 \1/2
e1(p) = error(p, H') := ( Z |p - HZmM) ,
KeTy,

/
eo(w) = error(w,L?) := ( Z Hw - H?((Aiﬂh)Hz,Ky 2-
KeTy

Also, if h, b’ denote two consecutive mesh sizes with their respective errors e; and e}, then
we will compute experimental rates of convergence for each variable as follows:

_ log(ei()/ei() . _
ri(-) == log(h /i) i=0,1,2.

3.6.1 Test 1. Smooth solution

In this test we solve the Oseen equations (3.2.1) on the square domain  := (0, 1)%. We take
v =1, =100, and the load term f and boundary conditions in such a way that the analytical
solution is given by:

_( 2 -2y —-1)(2y—1)  rotu—
u(z,y) = (—2y2(1 )l — 1)(22 — 1)> , w(x,y) =rotu = —Aq,

1
plz,y) =2+ y° — 5 and  Y(ry) = 2?(1— )’y (1 —y)*

Moreover, we consider the following convective velocity:

B y) (sm(a:) sin(y)) .

cos(x) cos(y)

Table 3.1 shows the convergence history of the virtual element scheme (3.3.21) applied to
our test problem for £ = 2. In addition, Table 3.2 shows the convergence history of the virtual
element schemes (3.3.21) and (3.5.17) for k = 3. In both cases, we have considered meshes T,'.

It can be seen from Tables 3.1 and 3.2 that the methods converge with an optimal order for
all the variables.

Figure 3.2 shows plots of the exact (top) and computed (bottom) stream-function, pressure
and vorticity, obtained with the virtual element methods analyzed in this chapter, using the
meshes 7;', with h = 1/32, k =3 and v = 1.

In Figure 3.3 we depict approximate velocity field obtained from the discrete stream-function
using the meshes 7;!, with h =1/32, k =3, v =1 and v = 100.

3.6.2 Test 2. Solution with boundary layer

In this numerical experiment, we solve the Oseen equations (3.2.1) on the square domain
Q:=(0,1)% We take v = 1073, 7 = 50 and the load term f and boundary conditions in such
a way that the analytical solution is given by:

2 ny(eA(x—l) _ 1)2(6>\(y—1) _ 1>(e>\(y—1) 4 )\ye)\(y—l) _ 1)
u(x,y) = ﬁ (_:Cy2<€)\(y—1) _ 1)26,\(75—1) _ 1)<e>\(x—1) + Apere—1) _ 1)) )
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eo(w) ro(w)
2.579728e-2 —
8.728651e-3 1.56
3.750317e-3 1.21
1.738230e-3 1.10
8.414948e-4 1.04

e2(y)  ra(¥)
3.515403e¢-2 —
1.606165¢-2 1.13
7.852990e-3 1.03
3.894174e-3 1.01
1.942167¢-3 1.00

h  eo(®)  zo(¥)
1/4 7.473458e-4 —
1/8 1.219438¢-4 2.61
1/16 1.750743¢-5 2.80
1/32 3.151107e-6 2.47
1/64 6.698881e-7 2.23

e1(v) ri(¥)
3.931137¢-3 —
8.002679e-4 2.29
1.633574e-4 2.29
3.947501e-5 2.04
9.958959¢-6 1.98

Table 3.1: Test 1. Errors and experimental rates for the stream-function v, and vorticity wy,
using the meshes 7;!, k =2, v = 1 and v = 100.

e1(¥)  ri(y)  eayy) 1) eilp)  ri(p) eolw) ro(w
1.106299e-3 — 1.949383e-2 — 3.158359e-1 — 1.970323e-2 —
1.110736e-4 3.31 5.057026e-3 1.94 1.622020e-1 0.96 5.128756e-3 1.94
1.160837e-5 3.25 1.285563e-3 1.97 8.253523e-2 0.97 1.303501e-3 1.97
1.230588e-6 3.23 3.062095e-4 2.06 4.055215e-2 1.02 3.103413e-4 2.07
1.352796e-7 3.18 7.017355e-5 2.12 1.986404e-2 1.02 7.098042e-5 2.12

h  eo(¥)  ro(¥)
1/4 1.852106e-4 —
1/8 1.405414e-5 3.72
1/16 1.027443¢-6 3.77
1/32 7.173524e-8 3.84
1/64 4.450005¢-9 4.01

Table 3.2: Test 1. Errors and experimental rates for the stream-function 1, pressure p; and
vorticity wy, using the meshes T;!, 3, v=1and v = 100.
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Figure 3.2: Test 1. Exact (top panels) and computed (bottom panels) stream-function, pressure

and vorticity, using the VEM methods (3.2.2) and (3.5.17) with 7},

1/32, k=3 and v = 1.
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Figure 3.3: Test 1. Velocity field obtained from the discrete stream-function with 7;', h = 1/32,
k=3 and v=1.

h eo() ro) e(y) m() eay) r(¥) eolw) row)
1/8 2.784694e-4 — 2.973866e-3 — 9.076308¢-2 — 5.838607e-2 —
1/16 1.030198¢-4 143 1.690738¢-3 0.81 7.965350e-2 0.18 4.042055e-2 0.53
1/32 1.926182e-5 2.14 6.324576e-4 1.41 5.785738¢-2 0.46 3.638668¢-2 0.15
1/64 1.992073e-6 3.27 1.607822e-4 1.97 3.321376e-2 0.88 2.211350e-2 0.71
1/128 3.418173e-7 2.54 3.208248e-5 2.32 1.593417e-2 1.05 9.492817e-3 1.22

Table 3.3: Test 2. Errors and experimental rates for the stream-function v, and vorticity wy,
using the meshes 7,2, k =2, v = 1072 and v = 50.

w(z,y) =rotu = —Aq, p(z,y) =" — (e — 1)?,

and

U(r,y) = 5e29P(1 = HEDPR(1 - MDY,
where A = 0.5/4/v, while the convective velocity is 3 = (1,1). We observe that ¢ has a
boundary layer on the top-right corner of the domain for small values of v.

Table 3.3 shows the convergence history of our virtual element scheme (3.3.21) applied to
the present test for k = 2, while Table 3.4 shows the convergence history of the virtual element
schemes (3.3.21) and (3.5.17) for & = 3. In both cases, the set of decompositions utilized is T;2.

In this numerical example, we notice that the rate of convergence predicted by Theo-
rems 3.4.1, 3.5.2 and 3.5.5 is attained by all the variables, in the corresponding norms. However,
in Table 3.4 we observe a degeneracy of the optimal convergence rate for the stream-function
in the L2-norm, we attribute this to the existence of the boundary layer on the top-right corner
of the domain.

Figure 3.4 shows plots of the exact (top) and computed (bottom) stream-function, pressure
and vorticity, obtained with the virtual element methods analyzed in this work, using the
meshes 7,2, with h = 1/64, k =3, v = 1072 and v = 50.

Figure 3.5 shows the approximate velocity field obtained from the discrete stream-function
and the streamlines using the meshes 7,2, with h = 1/64, k = 3, v = 1073 and v = 50.
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heo) o) e(®) mi() ex) 1Y) eilp) rilp) eolw) ro(w)
1/8 2.197659e-4 — 2.548761e-3 — 8.465258¢-2 — 2.466608c-1 — 8.483406e-2 —
1/16 4.584130e-5 2.26 1.000595e-3 1.34 5.882760e-2 0.52 1.244517e-1 0.98 5.890052e-2 0.52
1/32 3.579805¢-6 3.67 2.019404e-4 2.30 2.659083¢-2 1.14 6.250501e-2 0.99 2.659606e-2 1.14
1/64 2.381437e-7 3.90 3.314490e-5 2.60 8.793503e-3 1.59 3.130231e-2 0.99 8.787307e-3 1.59
1/128 3.084086e-8 2.94 4.223090e-6 2.97 2.148259e-3 2.03 1.565467e-2 0.99 2.144776e-3 2.03

Table 3.4: Test 2. Errors and experimental rates for the stream-function 1, pressure p; and
vorticity wy, using the meshes T2, k = 3, v = 1072 and v = 50.
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Figure 3.4: Test 2. Exact (top panels) and computed (bottom panels) stream-function, pressure
and vorticity, using the VEM methods (3.2.2) and (3.5.17) with 7,2, h =1/64, k = 3, v = 1073
and vy = 50.

3.6.3 Test 3. Solution with non homogeneous Dirichlet boundary
conditions.

The aim of this numerical test is twofold: consider small values of viscosity and solve the
Oseen equations (3.2.1) with non homogeneous boundary conditions on the square domain
Q := (0,1)* with the proposed scheme (3.3.21) and with the scheme obtained by using the

projection H%’VL to discretize (3.3.11)-(3.3.12) (cf. Remark 3.3.1).
We take v = 1077, v = 100, B = (1,1) and the load term f and boundary conditions in
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Figure 3.5: Test 2. Velocity field and streamlines obtained from the discrete stream-function
with 7,2, k=3, v = 1072 and ~ = 50.

such a way that the analytical solution is given by:

u(z,y) = 1 <_ ey sin(27x)(y cos(2my) — 7sin(2my))

— — rot
An2 \ ="t cos(2my) (@ sin(2rx) + 7rcos(27rx))) . wloy) = rotu,

1
p(z,y) = sin(x) — sin(y) and U(x,y) = ) sin(27z) cos(2my)e® Y.
T
Table 3.5 shows the convergence history of the scheme (3.3.21) and the scheme obtained by
using the projection H%’VL to discretize (3.3.11)-(3.3.12) for k = 2 with meshes 7,>.
In this numerical example, we notice that the rate of convergence predicted by Theo-
rems 3.4.1 and 3.5.2 is attained by all the variables for both methods. However, we have

not proved any order of convergence for the second method (denoted by H’;(’VL).

ho | ea(¥)  12(¢)  eo(w) To(w)| e2(¥) r2(¥) eo(w) ro(w)
H];{_lcurl Hl;(’vl

1/4 |7.3531e-1 — 4.1926e-1 — |7.0801e-1 —  3.4725e-1 —
1/8 [3.8849e-1  0.92  1.4227e-1 1.55(3.7940e-1 0.90 1.0708e-1 1.69
1/16 |2.1101e-1  0.88  7.3202e-2 0.95|2.0710e-1 0.87 6.0683e-2 0.81
1/321.0322e-1  1.03  3.0794e-2 1.24 [1.0136e-1 1.03 2.3762e-2 1.35
1/64|5.0594e-2  1.02  1.4993e-2 1.03 |4.9576e-2 1.03 1.1003e-2 1.11

1/128]2.5125e-2  1.00  6.8078e-3 1.13 |2.4766e-2 1.00 5.3181e-3 1.04

Table 3.5: Test 3. Errors and experimental rates for the stream-function 1, and vorticity wy,
using the meshes 7,2, k =2, v = 107" and v = 100.



Chapter 4

Virtual elements for the Navier—Stokes
system: stream function form and
primitive variables recovery algorithms

4.1 Introduction

Let Q C R? be a bounded simply connected domain, then we can associate to a divergence-
free velocity field u a scalar function 1, such that u = curl vy, which is called stream-function.
Employing this relation, we have that the incompressible Navier—Stokes equations formulated
in terms of the stream-function are given by the following nonlinear fourth-order problem (for
more details, see for instance [103, Chap. IV, sect. 2.1]: given a sufficiently smooth force
density f : Q — R2?, seek ¢ : Q — R, such that

vA*) — curl ¢ - V(Ay) = rot f in €,
w = 9o, anqvb =0 on aQa

where v > 0 represent the fluid viscosity and 0, denotes the normal derivative, gy and ¢,
are prescribed boundary data. This system describes the motion of an incompressible viscous
fluid in the domain €2, whose applications are found in different areas and sciences, such as:
engineering, oceanography, biomedicine and environmental processes, among others. Due to
the importance of its applications, during the past decades a great variety of numerical methods
have been developed to approximate the solution of the Navier-Stokes equations. Among these
methods, we mention those based on the mixed Galerkin schemes to discretize the standard
velocity-pressure formulation, for which the discrete spaces must be adequately constructed in
such a way that they satisfy the inf-sup condition to ensure the well-posedness of the mixed
discrete problem (see [103|). Another restrictive but desirable condition for these schemes is
the one associated with the incompressibility condition, where the error components are partly
decouple and for which different approaches have been devoted to the construction of schemes
satisfying this property (see for instance [109, 35, 41]).

For the two dimensional case, by introducing the stream-function variable 1, the classical
velocity-pressure formulation is reduced in the single nonlinear fourth-order PDEs (cf. (4.1.1)),
whose discretization does not need the construction of discrete inf-sup stable spaces and the
incompressibility constraint is automatically satisfied by construction. Furthermore, the for-
mulation (4.1.1) in addition to having a single unknown, has the advantage of avoiding the

(4.1.1)

63
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difficulties associated with the definition of boundary values for the vorticity field, present in
stream-function—vorticity formulation. Salient features related to the naturally skew-symmetry
property of the resulting trilinear form, allows the development of more direct stability and
convergence arguments (see below Remark 4.3.1). We observe that both the velocity and pres-
sure are not present in the system (4.1.1). However, if these fields are required them can
be recovered through stream-function postprocessing (see for instance |71, 115, 133]). In the
present work, we propose high-order approximations for the primitive variables. Furthermore,
we provide a suitable approximations for the vorticity field, via simple postprocessing formula.
The above facts turn the stream-function form into a very attractive formulation and for this
reason different works have been devoted to the development and analysis of efficient schemes
to approximate the Navier—Stokes equations formulated in terms of the stream-function. For
instance, in |71, 115, 91, 143] conforming Finite Element Methods (FEMs), bivariate spline and
hp-version discontinuous Galerkin FEMs have been proposed and analyzed. In Reference [95] a
C'-conforming FEM has been developed for the stationary Quasi-Geostrophic equations, which
is strongly related with the formulation (4.1.1).

In addition to modeling fluid flow problems in stream-function form, the fourth-order PDEs
are present in the modeling of different physical phenomenon, for instance, these kinds of equa-
tions also arise naturally in plate bending problems and the Cahn—Hilliard phase-field model.
Due to its importance and challenging nature, this topic has been a very active area of research,
and a wide variety of numerical approaches have been presented for solving these systems. For
instance, conforming and nonconforming FE schemes [79, 68|), C°-IP methods [142, 101, 53],
among others. In particular, to discretize fourth-order problems in primal form, using the clas-
sical conforming FE spaces, it is well know that a notable disadvantage arises: the construction
of these spaces involve high-order polynomials and a large number of degrees of freedom, which
is often regarded as a challenging endeavor, particularly from the computational viewpoint,
even when dealing with the classical triangular elements (see [79, Chap. 6, sect. 6.1]). In order
to overcome this inconvenience, we consider the approach presented in [58, 77, 18] to introduce
Cl-virtual schemes of arbitrary order k& > 2 to solve numerically the nonlinear fourth-order
Navier—Stokes problem (cf. (4.1.1)). The Virtual Element Method (in short, VEM) has been
originally introduced in [27] and it belongs to the group of polytopal Galerkin schemes for solving
PDEs, which have received substantial attention in recent decades due to their inherent versa-
tility in dealing with complex geometries [87, 62, 88|. Since its introduction the VEM has been
employed to discretize a wide variety of problems, for instance in |65, 58, 77, 18, 56, 139, 116, 1],
where second- and fourth-order problems have been developed and analyzed. In these works
can be observed the ability of VEMs to develop high-order numerical schemes to discretize
PDEs on general polytopal meshes. Moreover, it can observed another important feature of the
VEM; its capability to construct discrete schemes with high-regularity, by using few degrees of
freedom and low polynomial degrees. For instance, the lowest order polynomial degree is k = 2
and it used only 3 degrees of freedom per mesh vertex (the function and its gradient values
vertex). On the other hand, in the context of fluid mechanic, among the models studied by
using the VEM, we list [17, 35, 41, 100, 133, 3|.

The main objectives of the present contribution are the following: i) the design of high-
order stream VEMs on polygonal meshes and the development of novel error analysis for
these methods: we design C'-VEMs of high-order for solving the Navier—Stokes equations
in stream-function form on polygonal meshes. By using the important advantage of natu-
ral skew-symmetry property of the resulting trilinear form and others standard arguments of
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the VEM, we write directly an abstract convergence result for our nonlinear schemes, which
allows the derivation of an optimal error estimate in H?-norm, under minimal regularity of the
weak stream-function solution (namely, ¢ € H*™5(Q2), with s > 0, see below Theorem 4.4.3).
Moreover, we write new optimal error estimates in the H!- and L%-norms by using duality ar-
guments. In addition, we extend these schemes to the system with boundary conditions on
the pressure |45]; ii) the development of algorithms to recover additional variables of physical
interest: we present procedures to compute further important fields in fluid mechanics, such as:
the velocity, pressure and vorticity. More precisely, we propose high-order approximations for
the velocity and vorticity fields via postprocessing formulas from the discrete stream-function
and employing adequate polynomial projections. Such formulas are directly computable from
the degrees of freedom and allow to obtain optimal error estimates for these postprocessed vari-
ables. For pressure recovery technique we consider an additional second-order elliptic problem
with right hand side coming from the source term and the discrete virtual stream-function. In
order to discretize this linear second-order problem, we propose a scheme of high-order based
on the enhanced C°-conforming VE approach from |7, 65]; iii) the assessment of the numerical
performance by using the stream-function approach: we provide a set of benchmark tests that
highlight interesting features of the present stream VE schemes, including the approximation
of the Kovasznay and lid-driven cavity solutions on general polygonal meshes and using small
values of v. In addition, we investigate the behaviour of our VEM considering a hydrostatic
fluid problem. We observed that the results obtained are in accordance with another exactly
divergence-free Galerkin schemes, where the partial decoupling of the velocity and pressure er-
rors leads a positive effect on the velocity computation (see [35] in the VEM approach). Finally,
we present two numerical examples, which validates our new theoretical findings of item i) and
the extension for mixed boundary conditions.

A brief outline of the chapter follows. In Section 4.2 we introduce a variational formulation
of problem (4.1.1) and we establish its well-posedness. In Section 4.3 we present the C1-VE
discretization. In Section 4.4 we prove the existence and uniqueness of the discrete problem.
Furthermore, in the same section we derive optimal error estimates in H2, H'- and L2-norms for
the stream-function. In Section 4.5 we present strategies to compute the velocity, pressure and
vorticity fields, while in Section 4.6, we discuss the extension to the Navier-Stokes system with
boundary conditions on the pressure. Finally, in Section 4.7 five numerical test are presented.

4.2 Weak stream-function form and its well-posedness

For simplicity, we will work with homogeneous boundary conditions in the system (4.1.1),
i.e, v = 0y =0 on I'. Nevertheless, such restriction does not affect the generality of the
forthcoming analysis.

A weak form of problem (4.1.1), is given by: seek ¢ € W := H2(Q), such that

VAW, d) + By, ¢) = F(g)  Yoew, (4.2.1)
where the bilinear form A : W x W — R, the trilinear form B : W x W x W — R and the
linear functional F : WW — R, are given by the following expressions:

A(p, ¢) := (D*p, D*¢)o 0, Voo, 6 €W, (4.2.2)
B(¢; ¢, ¢) := (ACcurl ¢, Vo)o VC, 0,0 €W, (4.2.3)
F(¢) = (£, curl $)o Vo € W. (4.2.4)
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In what follows, we will assume that the force density satisfies f € L?(Q2) and we will endow it
with the norm: |||l = A(p, ©)? Vo € W.

Using the Banach fixed-point Theorem, we prove that problem (4.2.1) is well-posed. More
precisely, we have the following result.

Theorem 4.2.1. If -
A= CpCrv?||f|loq < 1, (4.2.5)

then there exists a unique ¢ € W solution to problem (4.2.1).
We finish this section with the following remark regarding the PDEs (4.1.1).

Remark 4.2.1. We recall that the steady Navier—Stokes equations in its standard velocity-
pressure formulation reads as: given the sufficiently smooth force density f, seek (u,p) such
that

—vAu+ (u-V)u+ Vp =1, divu=0 in Q, (4.2.6)

u=g on F) (p7 1)0,9 = 07 o
where u : 0 — R? is the velocity field, p : Q — R is the fluid pressure and g is a boundary data.
We have that the above problem is equivalent to system (4.1.1). Moreover, the set of boundary
conditions go and gy for the stream-function can be deduced from the boundary condition g for

the primitive variable w (for more details, see for instance [103, Chap. I, sect. 5.2 and Chap.
IV, sect. 2.2).

4.3 The C'-virtual element approximation

In this section we will introduce the C'-conforming VEMs of high-order k& > 2, for the
numerical approximation of problem (4.2.1). We start by introducing some basic tools and
notations to construct the discrete scheme. Then, we introduce the local and global virtual
spaces along with the degrees of freedom. Finally, we present the discrete stream-function
formulation.

Notation and mesh assumptions

Henceforth, we will adopt the usually notation for the virtual element framework (see for in-
stance |27, 65, 133]). In particular, we will denote by K a general polygon, Let 2, be a sequence
of decompositions of €2 into general non-overlapping polygons K, where h := maxgeq, hi. Fur-
thermore, for any K and each integer ¢ > 0 we denote by Py(€),), the classical discontinuous
piecewise (-order polynomial space. Moreover, for ¢t > 0, we consider the broken Hilbert space:
HY(Qy) = {¢ € L*(Q) : ¢|x € H(K) VK € Q}, endowed with the following broken semi-

1/2
norm [¢len = ( Xgeq, [91Fx) " -
For the theoretical analysis, we suppose that {2, satisfies the following assumptions: there

exists a real number p > 0 such that, every K € {2, we have
A1l : K is star-shaped with respect to every point of a ball of radius > phy;

A2 : the length h. of every edge e C 0K, satisfies h, > phg.
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4.3.1 Virtual spaces and degrees of freedom

With the notations presented in the above subsection we will introduce the VE spaces and
the degrees of freedom. For every polygon K € €2, and any integer k > 2, we consider the
number 7 := max{k, 3} and the following finite dimensional space introduced in [77]:

WH(K) = {¢) € H*(K) N CY(OK) : A%y, € Py_y(K), gule € Py(e), One O € Pp_1(e) Ve € 0K},

Next, for ¢, € WQ(K), we introduce the following set of linear operators:
e Dw1 : the values of ¢,(v;) for all vertex v; of the polygon K;
e Dw2 : the values of hy,Vop(v;) for all vertex v; of the polygon K;
e Dw3: for k£ > 3, the moments: (q,0ns ®n)o. Vg€ My _3(e), Vedge e;
e Dw4 : for r > 4, the moments: h;'(q,¢n)o. Vg€ M, _4(e), Vedge e;
e Dw5 : for k > 4, the moments: h*(q, ¢n)ox Vg € My_4(K), Vpolygon K,

where for each vertex v; we set hy, as the average of the diameters of the elements having v;
as a vertex. In order to construct an approximation for the form A(-,-), we define the operator
Py : CY(OK) — Py(K), as the following average:

1
Poy = N—KZSO(W), (4.3.1)
=1

where v;, 1 <1 < N, are the vertices of K. - .
Next, for each polygon K, we define the projector IT%" : Wi(K) — Pi(K) C WI(K), as
the solution of the local problems:

A (dn — Hl;éDﬁbh, q) =0 Vi, € Pr(K),
Po(dn — I dp) = 0, Po(V(e — I ¢y)) = 0.

For each K € (), and any integer k > 2 the local enhanced virtual space is given by:
W) = {on € WEK) : (", 00— T130n), = 0 V' € M_(K) UM;_o(K) |,

where M;_4(K) and M;_,(K) are scaled monomials of degree k — 3 and k — 2, respectively,
with the convention that M*,(K) := (). Besides, we have that the sets of linear operators
Dw1 — Dw5 constitutes a set of degrees of freedom for W}(K) and the operator TI}"
WH(K) — Py(K) is computable using the degrees of freedom Dw1 — Dw5 For further details,
see for instance [77, 133] (see also [58, 7]).

Now, for every decomposition €2 of ) into polygons K and for any £ > 2, we define
the global virtual space to the numerical approximation of the solution of problem (4.2.1), as
follows:

Wi={on €W: ¢ulx € WHK) VK € Q}.
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4.3.2 Polynomial projections and the discrete formulation

In this subsection we introduce other polynomial projections, which will be useful to build
an approximation of forms B(-;-,-) and F(-) (cf. (4.2.3) and (4.2.4), respectively). We start
denoting by M52 : L2(K) — P,_5(K) the usual L?(K)-projection onto the polynomial space
Pr_o(K). Next, we will consider the projection onto the vectorial polynomial space Py_;(K),
ie, Mt LK) — Py (K).

The following lemma establishes that certain polynomial functions are computable on W1 (K),
using only the information of the degrees of freedom Dw1 — Dwb5.

Lemma 4.3.1. For each ¢, € WI(K) the polynomial functions 115 2¢,, 1152 Ay, TIE Ve,
and H];(_lcurl on are computable using only the information of the degrees of freedom Dw1 —
Dwb5.

Proof. To prove that the polynomial function H’}{2A¢h is computable, let ¢, € WP (K) and
q € Pr_o(K), then using the definition of the projection H];(_Q and integration by parts, we have

(¢, T2 Aok = (0, Adn)ox = (0ny AQ)o.1c — (D, Onge 00,05 + (4 OngeBn)o.0k -

we observe that all term above are fully computable using the information of Dw1 — Dw5.
The remaining of the proof follow from the arguments presented in [65, 77, 133]. ]

Now, using the operators previously defined, we will construct the discrete version of the
forms defined in (4.2.2),(4.2.3) and (4.2.4). First, let Sx : Wi(K) x Wi(K) — R be any
symmetric positive definite bilinear forms to be chosen as to satisfy:

oAk (On, o) < Sk (én, on) < 1 Ax(dn, 1) Yor € Ker(H]}}’D), (4.3.2)

with ¢y and ¢; positive constants independent of K. We will choose the following representation
satisfying (4.3.2) (see [27, 58, 133]):

dof
NK

Sic(pn, dn) 1= hi® Y dofi(pn)dofi(¢n),

=1

where N&f .= dim(W?(K)).
Next, we consider the following discrete local bilinear form, A% : Wi(K) x Wi(K) — R
approximating the continuous form Ag/(-, ).

Al (on, 1) = Ax (HI}’D%, Hl;éD%) + Sk ((I- 11%P) oy, (I — Hl;éD)Qf)h) Yon, dn € WHK).
For the approximation of the local trilinear form Bk (-;-,-), we consider set
Bl (Cus ons o) = (I A I eurl gy, Hlf{lvcﬁh)o’l( VCh, on, o € WH(K).  (4.3.3)

Thus, for all ¢, ¢n, ¢ € WP, we define the global bilinear form and trilinear form as follows:

AM WX Wi = R, A" (o, bn) = Z Al (9, 1), (4.3.4)
KeQy,
B" Wi x WEx Wi =R, BGuspn, ) = > Bie(Cuion, bn)- (4.3.5)

KeQy,
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We recall the forms defined above are computable using the degrees of freedom Dw1 — Dw5.
In addition, we have that the trilinear form B"(-;-,-) is immediately extendable to the whole
W, and the local discrete bilinear form A% (-, -) satisfies the usual k-consistency and stability
VEM properties (see for instance |3, Proposition 3.6]).

We consider the following computable approximation of the right hand side

Fhgn) = > (M curl gn)ox = > (FI0 curl ¢n)ox Von € Wi (4.3.6)

KEQ},] KEQh

We finish this section by presenting the discrete problem for the numerical approximation
of system (4.2.1).
The discrete stream-function formulation reads as: seek v, € W, such that

v A" (Un, ¢n) + B (n; 0n, dn) = F*(n) Vo € W}, (4.3.7)

where A"(-,-) is the discrete bilinear form defined in (4.3.4), B(-;-,-) is the discrete trilinear
form defined in (4.3.5), and F"(-) is the functional introduced in (4.3.6).

Remark 4.3.1. We note that the discrete form B" built in (4.3.5), preserves the natural skew-
symmetry property of the continuous version B (c¢f. (4.2.3)). Thus, at discrete level there
18 no requirement to add any extra term to ensure this property, unlike velocity-pressure VE
discretizations, where a transpose term is necessary added (see for instance [35] in the con-
forming approach). This important fact, allows to establish stability and convergence of our
schemes, by using more direct arguments (see below Section 4.4). Besides, advantages from the
computational viewpoint can be observed.

4.4 Theoretical analysis

In this section we develop a rigorous analysis for the method proposed in Section 4.3. In
particular, we establish that the discrete problem (4.3.7) is well-posed by using the skew-
symmetry property of the discrete trilinear form and the classical Banach fixed-point Theorem.
Furthermore, we provide optimal a priori error estimates for the discrete stream-function in
H2-norm and using duality arguments we also provide an error estimate in H'- and L?-norms.

We begin this section recalling the boundedness of projections H’;{Q and H’;{l with respect
to general semi-norms, which will play an important role in the forthcoming sections. More
precisely, given p > 1, there exists Cpq > 1, independent of K, such that (for more details, see
for instance [100]):

|Hl}€(_2U|W;‘;(K) S de|U|W;,(K) Yo € W;(K), 0 S t S k— 1, k Z 2,
’HI;(_1V|W§J(K) < de\v]wé(K) Vv € W;(K), 0<t<Ek, kE>1

Also, we recall the following Sobolev embeddings: given a real ¢t > 0, we have H'™(Q) —
W4(Q), i.e., there exists Cyop > 0 independent of h, such that

[vlwe @) < Csonl|v][14+,0 Vv € H'(Q). (4.4.3)

The following lemma summarize some properties of the discrete forms defined in Sec-
tion 4.3.2. These properties will be used to establish the well-posedness of the discrete problem
(4.3.7).
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Lemma 4.4.1. There exist positive constants oy, s and 6’;, independent of h, such that for
any virtual functions Cp, on, o € WP the forms defined in (4.3.4), (4.3.5) and (4.3.6) satisfies
the following properties:

|A™(en, on)| < a1 llenllwllonllw, A (bny d1) > s ||bnll3y (4.4.4)
B"(C; om, 0n) < CrllGllwllenllwllonllws B (Cu; dny on) = 0, (4.4.5)

Proof. The proof follows from the definition of the corresponding forms and standard argu-
ments. 0

4.4.1 Fixed-point strategy

In order to prove the well-posedness of problem (4.3.7), we will establish a fixed-point
strategy. Indeed, given &, € W, we define the operator:

Th W — Wi
& — T"(&) = on,

where ¢y, is the solution of the following linear problem: seek ¢, € W, such that

N, (ns on) = v A" (@n, dn) + B"(&n; on, o) = F"(¢n) Ve, € Wi

By employing Lemma 4.4.1 and the Lax-Milgram Theorem we prove that the operator .7"
is well-defined. More precisely, given & € WP there exists a unique ¢, € WP such that
T"(&n) = on-

Now, we consider the ball Kj, :== {¢n, € W} : [|¢n]lw < Crn(aor)!|flloq}, and using the
previous lemma, we have that 7"(K;,) C Kj,. Observe that the problem (4.3.7) is well-posed if
only if 7" has a unique point-fixed in Cj,.

In order to demonstrate the existence and uniqueness, from now on, we make the following
assumption:

A 1= ChCorn(ar) 2| f]og < 1. (4.4.6)
The following result establishes the well-posedness of problem (4.3.7).

Theorem 4.4.1. If the assumption (4.4.6) is satisfied, then T" : K, — Ky, is a contraction
mapping. As a consequence, there exists a unique 1, € W solution to problem (4.3.7) satisfying
the following dependence of the data

[4bnllw < Crn(aor)™H[f]lo.q- (4.4.7)

Proof. The proof follows form standard arguments and the Banach point-fixed Theorem. [

4.4.2 FError estimates

In the present section we develop an error analysis for the VE scheme presented in Sec-
tion 4.3. First, we will establish some preliminary error estimates, which will play an important
role in the forthcoming sections.
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Preliminary results

We start by recalling the following approximation result for polynomials on star-shaped
domains (see, for instance [54]).

Proposition 4.4.1. If the assumption A1 is satisfied, then there exists a constant C' > 0, such
that for every ¢ € H™(K), there exists ¢, € Pp(K), k > 0, such that

|6 — Gl < CREPlmr, 0<m<k+1,t=0,1,...,[m],
where [m] denoting the largest integer equal to or smaller than m € R.

We have the following approximation properties for the projectors H’}}_Q and H’;{_l with
respect to general Sobolev semi-norms (see, for instance [54] and [100]).

Proposition 4.4.2. Assume that A1l s satisfied. Then for each K € ), and p > 1, there
exists Caprx > 0, independent of K, such that

|U — H%_2U|WZ(K) < Caprxh?_t|v|w;n(1() Yo € W;n(K), 0<t<
|V — Hl}:{_lvyw%([() < Caprxh%_ﬂv\wgz(;() Vv € W;n(K), 0

Now, we present the estimate for the interpolant ¢; € W (see [58, 77]).

Proposition 4.4.3. Assume that A1 and A2 are satisfied. Then, for each ¢ € H™(Q), there
exist o1 € WI and Cr > 0, independent of h, such that

||¢_¢I||t,ﬂ Sclhm_t|¢|m797 t:Oa1727 2§m§k+17 kZQ

By using Propositions 4.4.1 and 4.4.2, we will establish bounds involving the forms F(-),
B(-;-,-) and B"(;-,-). We start with the following bound for a dual norm. In what follows, we
will assume that the assumptions A1 and A2 of Section 4.3 are satisfied.

Proposition 4.4.4. Let k > 2 and f € H*2(Qy,), F(-) and F"(-) the functionals defined in
(4.2.4) and (4.3.6), respectively. Then, we have the following estimation:

- = sap OO0

¢}L€WZ’ ||¢hHW
¢h7£0

< CR*Yf|i_an.

In order to obtain optimal a priori error estimate for our scheme, under minimal regularity
condition on the weak solution, we start with the following result, which is a consequence of |26,
Theorem 7.4|.

Proposition 4.4.5. Let 2 be a bounded domain in R™ with Lipschitz continuous boundary. For
n
1 = 1,2, assume s;, s are real numbers satisfying: s; > s > 0 and s1+ 59— s > 5 Ifu e H(Q)

and v € H?2(Q), then uwv € H*(QY). Moreover, the pointwise multiplication of functions is a
continuous bilinear map H*' () x H*?(Q2) — H*(Q), i.e., [[uv]sa < Challvlls,.allv]ss.o-

Proof. The result follows from [26, Theorem 7.4|, taking the particular case when p; = p =
2.

U
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Next lemma is the main result of this subsection, which improve the error bound presented
in [3, Lemma 5.4|. Notice that in this case we can consider ¢ > 0.

Lemma 4.4.2. Let ¢ € H2P(Q)NW, with 0 <t < k — 1. Then, for all ¢ € W, there exists
C > 0, independent to h, such that

B = |B(¢;¢,¢) — B"(0;0,0)| < Ch'(|@ll2+ea + [@llw)l@llz+eallgllw.

Proof. By using the definition of the continuous and discrete nonlinear terms B(-;-, ) and
B(-;-,-) (cf. (4.2.3) and (4.3.3), respectively), we have

B = Z ((Agpcurl 0, Vo)ox — (H’%_QA@H’;{lcurl ®, H’f{_1V¢)o7K),

KeQy,

= Z ((Apcurl g, (I =TI NYV)ox + (Ap (I =I5 Meurl ¢ - I3 ' Vo)
KeQy,
+ ((Ap — 52 Ap) Wy teurl o, T 'V)o k) = Th + To + T,

In what follows we will bound each terms in the above identity. For the term 7T}, we consider
two case. First, we study the case 0 <t < 1. Then, we apply the Cauchy-Schwarz inequality,
and approximation properties of H’;{l to obtain

Ti= Y (Ageurlyp, (I-TI51)Ve) . < ChlApeurl glloo|Vélia

KeQy
< Chl|Agllallcurl glliallélw < Ch[[@llaallollzraldlhy,

where we have applied Proposition 4.4.5, with s; = ¢, s = 1 4+t and s = 0. For the case
1 <t <k—1, we use the orthogonality property of the projection operator H’;{l, the Cauchy-
Schwarz inequality, to get

T= Y (- T (Ageurl ), (I - T )V), o

KEQh

< Ch' | Apeurl ¢lli-10h|gllw < Ch¢ll2+eallelirenlllw,

where once again we have used the Proposition 4.4.5, but now with s; = sy =t and s =t — 1.
The remaining terms are estimated by using the approximation and continuity properties of
the involving operators together Sobolev embeddings, only requiring 0 < ¢t < k — 1 as in [3,
Lemma 5.4]. O

We finish this subsection with the following result.
Lemma 4.4.3. For all (, o, € W we have that

1B" (3.0, 6) = B"(G: ¢, 0)| < Cu (IIClwllgllw + le = ¢ + dllwllelbw + [1Iw) llélw-

Proof. The proof follows from adding and subtracting adequate terms, together with properties
in (4.4.5). O
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4.4.2.1 A priori estimate

In this section we will provide a new error estimate in H?-norm for our nonlinear discrete
scheme under minimal reqularity conditions on the weak stream-function solution. First, we
start establishing a Strang-type lemma. Indeed, given ¢ € W the solution of continuous
problem (4.2.1), then we introduce the following consistence error as:

Ch(¢a ¢h) = B(d}v ¢7 Qbh) - Bh(,lvba wv ¢h) v¢h € WZ (448)

which measure of the variational crime associated to the approximation of the trilinear form
B(+;-, ). Next, we present the following abstract convergence result.

Theorem 4.4.2. Let ¢ and 1y, be the unique solutions to problems (4.2.1) and (4.3.7), respec-
tively. Then, there exists C' > 0, independent of h, such that

1 Ch 1/}’ gbh
h”w_QbhHW‘i‘ inf |¢_§0k|2,h+ |’f—fh’| + sup M))
PP ) onewt  [@nllw
¢r#0

=l < C(_in

€ k

where C"(1, ) is the consistency errors defined in (4.4.8).

Proof. Let ¢, € WP and set xp, := ¢, — ¢p. Thus, ¥ — ¢, = (¢ — én) + xn- Now, by the
coercivity and consistency properties of bilinear form A" (-, -), adding and subtracting adequate
terms we have that

vas|xalliy < vA"(xn, xn) = vA"(n, xn) — v A" (1, xn)
= vA" (Yp, xn) — VAW, xn) + v Z (A}IL((SDk — O, xn) + A (¥ — o, Xh))

KeQy,

= (F"(xn) — Fxn)) + (B v, xn) — B"(ni ¥n, xa))
+v Z (A% (er — dn, xn) + Ak (b — 01, X)) 5

KeQy

where ¢, € Pp(K) is arbitrary. Now, we employ the continuity of bilinear forms Ag(-,-),
A% (-,-), and the triangular inequality, to obtain

> (A (er = b xn) + Al (¥ — @ xn)) < Clllgn — llw + 1 — @l lIXallw-

KeQy

On the another hand, by adding and subtracting the term B"(v;%,xs) and applying
Lemma 4.4.3, we obtain

‘Bh(¢h;¢h>Xh) - B(¢§¢7Xh)| < ’Bh(¢h;¢h,Xh) - Bh(@D;%Xh)‘ + |Bh(¢§¢,Xh) - B(¢§¢>Xh)’
< Gy (Inlwlixallw + 1 = dulw(lllw + [[allw)) Ixnllw + 1C" (b, xa)l.

By combining the three previous estimates we have that

|Ch(¢7 Xh)l )

vas||xnllw < CUIW = dnllw + v — orlan) + azHZDhHWHXhHW + || F = F™|| + Trlw

Thus, by using (4.4.7) and (4.4.6) we obtain (1 — Cj(vaw) " [¢allw) =1 — A, > 0.
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Therefore, from above inequality, we obtain

C"(¥, x
Ixadlw < C (Il = dnllw + 16 = @ulon + I1F = F4)| + M)
[Pl
Finally, the desired result follows from and triangle inequality the above bound. O

The following theorem is the main result of this section and it provides the accuracy of our
VE schemes in H2-norm under minimal reqularity of the weak solution.

Theorem 4.4.3. Under assumptions (4.2.5) and (4.4.6), let ¢ and 1y, be the unique solutions
of problems (4.2.1) and (4.3.7), respectively. Assuming that £ € H*2(Q,) and ¢ € H?+5(Q),
with s > 0, then there exists Ceony > 0 such that

H¢ - ¢h”w S C’conv hmin{&k_l} (||¢||2+S7Q + |f|k—27h) )
where Ceony := C(£50, A, \) is a suitable constant independent of h.

Proof. The proof follows by combining Theorem 4.4.2, Propositions 4.4.1, 4.4.3, 4.4.4, and
Lemma 4.4.2. ]

4.4.2.2 Error estimates in H' and L?

In this subsection we will lead the main ingredients to derive optimal error estimates in H!-
and L2-norms for the stream-function. First, we consider the following dual problem: given
1 € W (the unique solution of problem (4.2.1)), seek ¢ € W, such that

vA(p,d) + B(W; 0,0) + B(p; ¥, ¢) = L(p) Yo W, (4.4.9)

where A(-,-) and B(+;-,-) are the forms defined in (4.2.2) and (4.2.3), respectively and £ €
H~(Q), with i = 1,2 is a functional, which will be specified later. Following the same arguments
presented in [111] we have that problem (4.4.9) is well-posed.

In order to develop the error estimates in H!- and L2-norms, from now on, we make the
following assumption for the solution of problem (4.2.1):

Assumption 4.4.1. There exists s > 1/2 such that 1 € H*T5(Q). Moreover, for the particular
case 1/2 < s < 1, there exists Creg > 0, independent of h, satisfying ||¢] 2150 < Cregl|fllo.0-

We have the following previous result involving the trilinear forms B(-;-,-) and B"(-;-,-)
defined in (4.2.3) and (4.3.5), respectively.

Lemma 4.4.4. Let p € WNH*™(Q) and ¢y, € W} be the unique solutions of problems (4.2.1)
and (4.3.7), respectively. Assuming that £ € H*2(Q) and let o € H2TH(Q), with t € (1/2,1].
Then, it holds

I = B"(Yn; ¥n, ) = Bt ¥n, @) < 2ChCreglflloelt — vnlhallellzse
+ O(hrrmmts k2t g g2t K2 (€] + 9 l21s0) [ ll2ree,

where C' > 0 s a constant independent of h, é\h and Cyeg are the constants in (4.4.5), respec-
tively and Assumption 4.4.1.
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Proof. By using the definition of trilinear forms B(+;-,-) and B"(;-,-), adding and subtracting
suitable terms we have the following identity

I= Z ((I = I1572) Ay, (curl ¢, — curl ), V9D)0,K

KeQ,
+ (I (A (s — ) (I — I Heurl 4y, V(p)QK
+ (T 2(A(yn — ) eurl gy, (=I5 V)
+ (I 2 A9ITE Y eurl (v — ), (I —T11)Ve)
+ (I 2AY((1 = T eurl ) Vo) o+ (1= T3 Ay )eurl v, Vi) o
+ (A I eurly, (I -TLYVe) o=t L+ I+ Iy + I+ I + Lo + I,
In what follows, we will bound each terms of the above expression. Indeed, for the term I;

we use the Holder and triangle inequalities, along with approximations properties of H’;(_Q, to
obtain

L< )y @AY, = Adllox + 1A% = Ao k) leur] (vn — )l | Vel

KeQy,
< O — dnllw + BB g2y g0) leur] (& — gn) o IVl
< C’thin{S’kil}(|f|k727h + |’¢H2+S,Q)H¢H2+t79’

where we have used the Holder inequality (for sequences), the Sobolev inclusion (4.4.3) and
Theorem 4.4.3. Following similar arguments (with some slight variations) we estimate the
remaining terms. In particular, we prove

L+ I+ Iy + I + I < C(Rmmis k=1t g p2minds =10 (1) o b 4+ [0 a4s0) [[0]l20,0-

Moreover, by using the Sobolev inclusion H*(Q2) — L*(Q), with s € (1/2, 1], we get

Is < 2CeegChllE ool = Unlioll@llzren + CRT™ Ryl oll@llati0-
By combining the above estimates we obtain the desired result. O]
In what follows, we will consider the following additional small data assumption:

Assumption 4.4.2. Let 6’; and C’reg are the constants in (4.4.5) and Assumption 4.4.1, re-
spectively. We assume that 2C* C’thHO@ <L

reg

The following result provides error estimates in H* and L?-norms of our numerical schemes.

Theorem 4.4.4. Let k > 2 and £ € H*2(Q,). Under assumptions (4.2.5) and (4.4.6), let
Y and iy, be the unique solutions to the continuous and discrete problems (4.2.1) and (4.3.7),
respectively. Moreover if Assumption 4.4.2 is satisfied, then there exists § € (1/2,1], such that

W) . ¢h|1,§2 S C(h§+min{s,k—1} + thin{s,k‘—l}) (|f|kz—2,h + H¢|’2+579) .

Moreover, we have the following estimates:
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a) if k=2, f € L2(Q) and (4.4.2) is satisfied, then there exists § € (1/2,1], such

[ = tnllog < C(RTMED 4 p2ERED)(|If o + [[¢]l2400),

b) if k>3 and £ € H*=2(Qy,), then there exists v € (1/2,2], such that

I = nlloq < ORI g g2 EAD (1], o p + [¢]l24s0).

In all the above cases C' is a positive constant independent of h.

Proof. Let ¢ € W be the solution of (4.4.9), with £ : H}(Q) — R defined by:

L(p) = (V¥ —9n), Ve)oa.

Then, using the additional regularity of problem (4.4.9) (see [111, Section 2|), there exists
§ € (1/2,1] such that ¢ € WNH?T(Q) and

|]l245.0 < Creg|t — ¥nl10- (4.4.10)

Now, let ¢; € WE be such that Proposition 4.4.3 holds true. Then, we have

¢ — orllw < Crh¥||¢llarsa < CrCregh®|t — nl10. (4.4.11)

Taking ¢ := (¢ — 1) € W as test function in (4.4.9), and adding an subtracting several
adequate terms, we have the following identity

v — ¢hﬁ,n =vAW —Yp, ¢ — 1) + V[Ah(why é1) — A(n, 1)) + [F(é1) — fh(@)]
+ [B"(vn; ¥n, ¢1 — &) — B(W; ¥, 1 — 6)] + By — thn; b — tn, @) (4.4.12)
+ [B"(¥n; ¥n, @) — B(n; ¥n, @) =: Tar + Tz + T + T + T + Tiss.

By using standard arguments we obtain
Tar + Taz + Tr < CHF R ((E] g+ [[9]|2450) [¢ — ¥al10-
Moreover, the term Tp; is bounded by using the Lemmas 4.4.2 and 4.4.3, as follows:

Tg1| < CR™™ S E B ([ @lars0 + 101w ¢ lla1sallér — dllw
+ Cullv = ¥ulwllo = drllw(I¥lw + 1¥allw) + Chlle — 1l (2ll¥nllw + 12]lw).

Now, using the above estimate, (4.4.11) and Theorem 4.4.3, we have that

| T1| < CHE™MS R (b |oy o0 + 01w 1|21 sl — ¥nl1o
+ CRE U (9] lgsg 0 + [Elrman) (101w + [[nlw) ¥ — ¥alio
+ CRF R (gl + [9]w) ¢ = Pl

where we have used in the second term the estimate:

16 — @rll5y < CTCZ P[0 — nlT g < Ch* || — pllwlt — 10
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Next, we will continue with the remaining terms of (4.4.12). For the term Tz, we use the
continuity of trilinear form B(-;-,-), Theorem 4.4.3 and (4.4.10) to obtain

Ty < CR*™ ™5 ([0 ]|ass0 + [Elk—2) |t — Unl10- (4.4.13)
For the term Tps3 we use Lemma 4.4.4 and (4.4.10) to obtain

Tps < O(hFmintsh=td y p2min{s k=1 (1F], o 0+ (9] l24s.0) [ — Ynlio
+ QCEegCthHO,Q’w - z/}hﬁ,ﬂ'

Finally, the desired result is easily obtained by combining the estimates (4.4.12)—(4.4.14)
and the fact that (1 — 202 6’\h\|f\|09) > 0 (cf. Assumption 4.4.2).

We continue with the L® estimates. Indeed, the bound a), follows from norms equivalence.
To prove b), we consider the functional L£(¢) := (¢¥ — ¥n, @)oo Ve € W, then by repeating
similar arguments above we obtain the result. O]

(4.4.14)

4.5 Computing further variables of interest

In this section, by using the discrete stream-function obtained by solving the problem (4.3.7),
we propose strategies to approximate further variables that are of great importance in fluid
mechanics, namely; the velocity (u), pressure (p) and vorticity (w). Moreover, we write a
priort error estimates for these variables.

4.5.1 The fluid velocity and vorticity recovery algorithm

We start by noticing that if ¢» € W is the unique solution of the continuous problem (4.2.1),
then the velocity and vorticity fields of Navier-Stokes system (4.2.6) is given by:

u = curl and  w =rotu = rot(curl ) = —Aq. (4.5.1)

At the discrete level, employing the projector Hlf(_l and H’;{2, we propose a fully computable
approximation of the velocity and vorticity variables, given by:

Uy, = teurlyy, and @, =~ 2(Ayy), (4.5.2)
where for all v € L2(2) and for all ¢ € L?(Q) we have used the notation
(I, 7'k = TG (V) and (I 7%9)|x = 7% (0lk) VK € O
The following result establishes the accuracy for the velocity and vorticity fields.
Theorem 4.5.1. Assume that the hypotheses of Theorem 4.4.3 hold true, then
lu =15+ lw — Bnllog < CLR™™MH (|9l 2s0 + [Fle—zn)

lu — plloq < 52(h§+min{s,k—1} + h2min{s,k—1}) ([ ll24s.0 + [Elr—2n)

where 51 and 52 are suitable constants independent of h.

Proof. The proof follows from identities (4.5.1) and (4.5.2), the triangle inequality and ap-
proximation and stability properties of the involved operators, together with Theorems 4.4.3
and 4.4.4. m
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4.5.2 The fluid pressure recovery algorithm

In this subsection, we present a strategy to recover the fluid pressure of the Navier—Stokes
system (4.2.6). We extend the ideas recently presented in [133]|. In this work we propose a
discrete virtual scheme of high-order ¢ := k — 2 (with k > 3), based on the enhanced C°-VEM
presented in [65] (see also [7]). From now, we assume that 2 is convex.

4.5.2.1 Continuous variational formulation

We start by introducing the following Hilbert space H := {qg € H(Q) : (¢, 1)oo = 0}. Now,
by using the identities Au = —curl(rot u)+V(divu) and rot(curly)) = —A in the momentum
equation of the Navier—Stokes problem (cf. (4.2.6) in Remark 4.2.1), we obtain

Vp=f—(u-V)u+v(—curl(rotu)+V(divu)) = f — (curly- V)curly + v curl (Ay), (4.5.3)

where we have employed also the identities u = curly and diva = 0 in Q (cf. system (4.2.6)).
Now, we proceed to test the equation (4.5.3) against Vg, with ¢ € H, then we get the
following variational problem: seek p € H, such that

D(p,q) =G"(a) Vq€H, (4.5.4)
where the form D : H x H — R is defined by
D(p,q) = (Vp,Vqloa  Vp,q €,
and G¥ : H — R is the functional defined by
G%(q) := ((f — (curly - V)curl ¢ + v curl (A¢)), Vq)oq Vg € H.

The following result establishes that problem (4.5.4) is well-posed. The proof follows from
the generalized Poincaré inequality and the Lax-Milgram Theorem.

Theorem 4.5.2. Problem (4.5.4) have a unique solution p € H. Moreover, there exists C > 0
such that

Pl < C([¢llsa + flloe) < Clliflloo-

4.5.2.2 (C'-VE approximation

From now on, we assume the C'-VEM (4.3.7) has been solved with ¥ > 3. Thus, we will
introduce a C°-VEM of high-order ¢ := k — 2 > 1, to discretize problem (4.5.4) (over the same
mesh €2,).

First, we define the projector II}.* : H'(K) — Py(K) for each ¢, € H'(K) as the solution of
the local problems:

De(qn — I qn, 1) =0 Vry € Po(K), and Po(I1} qn — qn) =0,

where the operator Py(-) is defined in (4.3.1). By employing this projection we introduce our
local virtual space to approximate the fluid pressure:

HY(K) := {q, € H(K) N C°0K) : Agy, € Py(K), qn|e € Pe(e) Ve C OK
(r*,an — I qu)ox =0 Vr* € M (K) UM (K)}.

For each ¢, € HI(K) we consider the following set of linear operators:
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P; : the values of g,(v;) for all vertex v; of the polygon K;

Py : for £ > 2, the moments: h;'(qn, 7)o Vr € My o(e), Vedge e;

Py : for £ > 2, the moments: h>(qn, 7)o V7 € My_»(E) Vpolygon E.

We have that the sets of linear operator P; — P3 constitutes a set of degrees of freedom for
H?(K). Moreover, the operator 11" : H}(K) — Py(K) C H?(K) is computable using only the
information of the set of degrees of freedom P1 —Pj (for further details, see for instance |7, 65]).

The global virtual space to approximate the fluid pressure of system (4.2.6), for each de-
composition 2 of €2 is given by

HY := {qn € H : qu|lx € H)(K) VK € Qp}.
In order to approximate the D(-,-), we set
Die(pny an) = (T3 Vu, T3 Van)o i + Sy (1= T )pn, (1= T )an),

where Sy (+,-) given by the classical Euclidean scalar product associated to the degrees of free-
dom P; — P3 (see |27, 65]), which satisfies the stability properties. Using the above definition,
we introduce the discrete problem for the pressure variable: seek p, € H? such that

"(pns an) Z Dic(pn-an) = G""(qn)  Van € Hy, (4.5.5)
KeQy,

where the discrete linear functional is given by
G (qn) Z G Z (f — (I} *eurl ¢y, - V)T 'curl ¢y,

KeQy, KeQy (4.5.6)
+ veurl (HIE(_QAQ/);L), Hlé(_quh)O X

We have that the bilinear form D" (-, -) is bounded and using the generalized Poincaré inequality
we prove that D"(-,-) is uniformly elliptic.
4.5.2.3 Theoretical analysis

Now, we develop the corresponding theoretical analysis for the VE scheme presented in
Section 4.5.2.2. In particular, we establish that problem (4.5.5) is well-posed and we provide a
priori error estimate for this scheme.

We start recalling the inverse inequalities for polynomials on polygons (see [35]).

Lemma 4.5.1. There exist ¢1,¢5 > 0, independent of h, such that for all ¢ € P,,(K), with
m > 0 it holds

lalix <@hitldlox,  and gl < @b lldllox- (4.5.7)

Thus, from the first inverse inequality in (4.5.7) and approximation property of projector
H’;;l, we obtain the following stability property:

15 tcurl ¢y i < Coa|dlox VK € Qp, Vo € HA(K). (4.5.8)

Henceforth, we will assume quasi-uniformity for the family of meshes €.
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A3: For each h > 0 and for each K € y,, there exists an uniform constant ¢ > 0, independent
of h, such that hx > ch.

Proposition 4.5.1. If the assumptions A1 — A3 are satisfied, 1p € H*(Q)NW and f € H*(Qy,),
then the lineal functional G¥» : HY — R defined in (4.5.6) is bounded.

Proof. Let g, € H}. Then, by using triangle inequality we get

G (@)l < Clifloellgnllie + Y (AT curl ¢, - V)T curl vn, T Van)o x|
KeQy (459)

+ v|(curl (I17°Ady), I 'Van)o, x| =: Cllfloellanllie + G2 + Gs.

For the term Gy, we add and subtract (curly - V)curly - II5- V¢, then by employing triangle
inequality and the stability of the projections 1152 and TT5%* (cf. (4.4.1) and (4.4.2)), we obtain

G < Z | ((curl ¢ - V)curl ¢ — (I 'eurl ¢y, - V)T curl v, T ' V)

KeQyp

O,K‘

(4.5.10)
+ 3 |((curl ¢ - W)eurl v, I 'V )o k| = Goo + Gos.

KeQyp

From the Cauchy-Schwarz inequality, we have that Go, < C||¥]|wl|?Y]ls.0llgnll1.a- For the term
Gaa, we add and subtract (IT% 'curl ey, - V)curl ¢ - T4 'V, and we apply triangle inequality
to obtain

Goa < > leurl ¢ — TT curl ¢y o,k | Veurl s o) | T V| o

KeQy

+ Z ITT5- curl ¢ i) |V (curl ¢ — TG curl wh)HOKHI_Ié(_quhHU;(K)
KeQy,

<C Z ||curl ) — H’;(’lcurl Ynllo.x ||curl W‘Wi(K)h;/QHV%HO,K (4.5.11)
KeQy,

+C Z ITT}  curl ¢y La (x| curl ¢ — IT5 ' curl whh,Khl_(l/QHthHo,K
KeQy,
= Tl + T27

where we have used the second inverse inequality in (4.5.7) and stability of projector Hig L
Now, we will estimate the terms 7} and T5. For term T}, first we add and subtract Hl[“(’lcurlw,
then applying approximation and stability properties of the projector H’;gl, along with Theorem
4.4.3, we obtain

T <C Y (I — I Yeurl ¥ + [T curl (v — ¢)| ) leurl ||y ) hie IV anll

KeQy,

<O S (6l + (1l + [E10) lewrl Yl 72 1V anllo
KEQh

< C([¥llz0 + (1llso + [E1n) D lewrl e (L im 1 Vaallo x

KeQy,

< C(|[¥llse + [El10) @ ¥ lsellgnlle.
(4.5.12)
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where we have also used assumption A3, the relation h}f < C||1{|ra(g), the Hélder inequality
(for sequences) and Sobolev embedding H?(Q2) — W}(Q).

For the term T3, we use the same arguments as in (4.5.12), stability property (4.4.2) and
Theorem 4.4.3, to get

T < C([9lls0 + Elun) IHua@ ¥allwllgnlle- (4.5.13)
Next, inserting the estimates (4.5.12), (4.5.13) in (4.5.11), we obtain
Go < Gao 4+ Gop < C(||Yl,0 + [f]1n) llanl1.0- (4.5.14)

To estimate the term Gs (cf. (4.5.9)), we observe that curl (IT52Aq),) € Py,_3(K), then using
the first inverse inequality in (4.5.7) and repeating the arguments used in [133, Proposition 4.20|,
we get

Gs < C([[¥lls. + [£]10) gm0 (4.5.15)
where the constant C' > 0 depends on the constant ¢ in assumption A3. Finally, from (4.5.9),
(4.5.14) and (4.5.15) we obtain the desired result. O

As a consequence of Proposition 4.5.1 and the Lax-Milgram Theorem, we have that problem
(4.5.5) is well-posed. More precisely, we have the following result.

Theorem 4.5.3. Under the same assumptions of Proposition 4.5.1, problem (4.5.5) admits a
unique solution py, € HE and there exists C > 0, independent to h, such that

[nll1.0 < C(|Y]30 + [f]1n).

In what follows, we will establish the order of convergence of the VE scheme (4.5.5). We
begin with the following Strang-type lemma, which proof is obtained from standard arguments
in the VEM literature (see for instance [27, 65]).

Proposition 4.5.2. Suppose that the assumptions of Proposition 4.5.1, are satisfied. Let p
and py, be the unique solutions of problems (4.5.4) and (4.5.5), respectively. Then, there exists
C > 0, independent of h, such that

P — oo < C( inf ||[p—allio+ inf |p—welin+ 1GY — gwhH)-
qnEHh we€PL ()

Next, in order to conclude the error estimate, we will bound the term [|G¥ — G¥*||. With
this end, we will require that ¢ € H**1(Q), with k > 3.

Proposition 4.5.3. Let k > 3 and f € H*"2(Q,). Suppose that Assumptions A1l — A3 are
satisfied and ¢ € H*1(Q), then we have the following estimate:

16 = G| < Ch* ([ llk41.0 + Eli2)
Proof. Let g, € H?, then using the definition of the functionals G¥(-) and G¥#(-) together with

the triangle inequality and properties of Hﬁ; 1 we have that

1G% () — G¥"(qn)] < > |(F = T, Vign — T Van)o k|

KeQy,
+ |(curl g - V)eurl ¢ Vo, — (I curl oy, - V)M eurl v, I Van)ok | (4.5.16)
+ y} (curl (Av) - Vg, — curl (IT52A¢), TS 'V,
< Ch*[flen lanlly o + 1 + T

Jox|
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To estimate 77, we add and subtract suitable terms and employing the triangle inequality, we
have that

T, = Z ‘((curl Y- V)curly, (I — Hg(_l)VQh)OvK‘

KGQ]—L
+ |(curl ¢ - V)(curl v — I curl ¥y ), TT 'V )o ¢ |
+ ‘ (((curl (I H’I“(_lcurl Up) - V)Hl}}_lcurl W, Hﬁ(_lv%)o K| =: T, + Ty + Tie.

(4.5.17)

In that follows, we will establish bounds for the three terms above. We start with Ti,.

By orthogonality and approximation properties of the projection Hﬁ; ! and Cauchy-Schwarz

inequality, we obtain

Tia < ) I =T ((curl ¢ - W)eurl )|fo g [|(1 — T ) Vo, i
Keo, (4.5.18)

< Chf|(curl ¢ - V)eurl ¢)eqllanlie < CR ¢ |ksroll®llkellanlli o,

where we have used Holder inequality and the Sobolev inclusion H**1(Q) — W{(Q2). In order
to bound the term T, we use approximation property of the operator TI5 ' (cf. (4.4.2)), the
second inverse inequality in (4.5.7) and stability property of Hf}; ! as follows:

Ty, < Z |curl ||| curl ¢ — I ' curl whh’KHl_Iiglv%HLz;(K)
KeQy,

<C Y leurl ¥fluag A (¢l + [£li—o) b 2T Vo g,

KeQy,

where in the last inequality, we have used stability property (4.5.8) and Theorem 4.4.3. Next,
from the above inequality, using Hélder inequality, Sobolev inclusion and Assumption A3, we
get

Typ < OB (|[llnrra + Iflk-20) Y lleurl ¢lsge | Uluso I Vanllo.x
Ko, (4.5.19)

< CO ([ llerr.e + [Elk-20) 191zl Ll llanle.

Then, using similar arguments, we have the following bound fo the term 7T.:

T < Z |curl ¢ — II5 curl oy [|o, 1 || VITS P eurl o || 1T ' Van |

< CO ([ llr.0 + [flk-20) 1llLa 1 s llanlle.

Next, inserting (4.5.18), (4.5.19) and (4.5.20) in (4.5.17), we have

Ty < CR ([[¢]les1.0 + |fle—2) lgnll1 - (4.5.21)

Now, repeating the arguments used in [133, Proposition 4.22|, we obtain the same bound
as in (4.5.21) for the term T5. Finally, by combining the above fact, the estimates (4.5.16) and
(4.5.21) we deduce the desired result. O

The following theorem provides the rate of convergence of our virtual scheme (4.5.5) in
terms of k > 3, where k is the degree accuracy of the VE scheme (4.3.7).
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Theorem 4.5.4. Assume p € H*71(Q) NH, then there exists C > 0, independent of h, such
that

1P — prlle < CRF 2 (|9l + [Plli—1.0 + |Elr—2n) -

Proof. The proof follows by combining Propositions 4.5.2, 4.5.3, approximation properties in
the polynomial and virtual element space H? (see [65, 134]). O

4.6 Extension to the boundary conditions on the pressure
case

In this section we present a brief extension to the Navier-Stokes system with boundary
conditions on the pressure formulated in terms of the stream-function.

Now, we assume that the boundary I admits a partition without overlap into two parts, as
follows: I' = T; UTy, T;NTy = (. Moreover, we assume that |T';| > 0 in I' and that each
connected component of T’y is flat. Next, we consider the Navier—Stokes problem (4.2.6), with
the following boundary conditions (for further details, see [45, 48]):

1
u=0 only, u-t=0 and p+§|u|2:p0 on I'y. (4.6.1)

Let us consider the space
X={veH'(Q):v.n=0 on It and v-t=0 on T}.

We have that a variational formulation in terms of the primitive variables of problem (4.2.6)
1

with boundary conditions (4.6.1), read as: given f € L*(Q) and p, € HE)(T2), find (u,p) €
X x L%(Q2) such that

v(rotu,rot v)o o + (rotu x u,v)oo — (p + \u|2/2, div v)oo = (f,v)o.o — (po, (v -1))or,
_(q) div u)O,Q - 07
(4.6.2)

for all (v,q) € X x L*(Q). The goal now is to obtain a formulation in terms of the stream-
function, let us define the space V. = {veX:divv=0 in Q}, and we note that given
v € V, there exists (the stream-function) ¢ € H?(Q)/R, such that v = curl ¢ € H} ().

o~

Motivated by the above facts, we consider the Hilbert space for the stream-function: W :=
{peW:¢6=0 on I't and 9,0 =0 on I'}. Thus, by introducing the stream-function
of the velocity field (i.e., u = curl ¢)) and using some identities, we have

rot(curl ) = —A¢ and (rotu xu)-v = (Apcurly)- Ve. (4.6.3)

Therefore, by combining (4.6.2) and (4.6.3), we obtain the following stream-function form:
1 _
given f € L?(Q) and py € HE,(T's), seek p € W

vA(, ¢) + B(y;, 6) = F(¢) — Gl¢)  VoeW, (4.6.4)
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with B :/)//Y\X WxW — Rand F : W — R are defined as before and the forms A : Wx W — R,
and G : W — R, are given by:

./Z(QO, ¢) = (Ag07 A¢)O,Qa and g(¢> = (p07 curl 925 ’ n)O,FQ \VIQO, 925 € W

From the generalized Poincaré inequality we have that ||o|ls5 = A, ©)Y/2 is a norm in W.

Thus, we will endow the space W with this norm.
To discretize the new forms defined above, we set

—~

A (n, ¢n) = Y (AT g, AR dn)o.x + Sk (1= TIRD) o, (1 — T ),

KeQy,

G"(¢n) == > _(po, curl ¢y, - m)or,,

e€l’s

for all oy, é € W= {01 € W gulic € WH(K) VK €}, k>2

We recall that the analysis developed in Sections 4.4.1 and 4.4.2.1 can be extended in order
to obtain the well-posedness and optimal error estimate in H?>-norm for the scheme (4.6.4).
Moreover, the velocity and vorticity are recovery by using the same algorithm presented in
subsection 4.5.1. However, we observe that the extension to the pressure recovery technique
(cf. Section(4.5.2)) to this type of boundary conditions does not follow directly due to the
boundary and regularity conditions required for the pressure weak solution. We are going to
test the scheme (4.6.4) in Test 4.7.6.

Finally, we observe that when I'y = () we recovery the standard Navier-Stokes system (4.2.6),
with g = 0.

4.7 Numerical experiments

In this section we present several numerical experiments to show the performance of our
VEMSs proposed in Sections 4.3 and 4.5. Moreover, we test the VEM (4.6.4).

4.7.1 Some aspects of the numerical implementation

In each example to solve the nonlinear system resulting from (4.3.7), we employ the Newton
method, with a tolerance of Tol = 1078, For the first and second tests we take as initial guess
the solution of the associated linear Stokes problem, while for the other examples, we will
specific later the initial guess taken. We test the C'-VEM, with k& = 2,3 and using different
families of polygonal meshes (see Figure 4.1): i) Q;: quadrilateral meshes; ii) Q2: centroidal
Voronoi meshes; iii) Q3: uniform triangular meshes; iv) Q}: concave rhombic meshes.

In order to verify the convergence of the proposed schemes, we introduce the following
computable errors for : = 0,1,2 and 7 =0, 1:

Ei(1)) = Error(y, HY) = [ — 1%y, |;,.  Ey(u) = Error(u, ) := |u — sl
E,(p) = Error(p, H") := |p — IIVppl1n,  Eo(w) = Error(w,L?) := ||w — Gpllo.q-
The experimental rates of convergence for each variable are defined as follows:
r(-) = [log(Es(-) /Bi(-))][log(h/B)] ™", i =0,1,2,

where E; and E; denote the error associated to two consecutive mesh sizes h, h.
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Figure 4.1: Sample meshes. Q}, Q2 Q% and Q7.

4.7.2 Test 1. The exact solution of Kovasznay flow

This first numerical test illustrates the performance of the VE schemes (4.3.7) and (4.5.5)
as a function of the viscosity v. More precisely, we consider the domain € := (—0.5,1.5) x (0, 2)
and the analytic solution to the Navier—Stokes system obtained by Kovasznay:

1
Y(z,y) =y — o—exp(Az)sin(2my),  u(z,y) = curly,
T
1
plz,y) = ~5 exp(2Az) +p and w = —Avy,

where A = %¢ — <RT'32 + 47T2> 1/2, Re := v~ ! is the Reynolds number and p € R is such that
(p,1)1.0 = 0. The load term f and non-homogeneous Dirichlet Boundary Conditions (BCs)
are chosen so that they correspond to this exact solution. Table 4.1 shows the convergence
history of the VEMs (4.3.7) and (4.5.5), with polynomial degrees k = 3 and ¢ = 1, respectively,
employing the meshes 2} and different values of Re. We notice that the rates of convergence
predicted in sections 4.4.2 and 4.5 are attained by the principal unknown stream-function and
by all the postprocessed variables.

Next, in Table 4.2 we have reported the behavior of the Newton method as a function
of the Reynolds number, considering different mesh sizes and the polynomial degrees k = 2
and k£ = 3. It can be seen that the larger Re more iterations are necessary to achieve the
tolerance. Besides, we observe that when the polynomial degree increase, then the Newton
method needs less iterations. The spaces with lines in Table 4.2 mean that the iterative method
has taken more than 100 iterations. Figure 4.2 shows plots of the exact (top) and approximated
(bottom) stream-function, pressure and vorticity, obtained with the VEMs (4.3.7), (4.5.5), and
postprocess of Section 4.5.1, using the mesh Qj, with h~! = 64, k = 3 and Re = 40.

4.7.3 Test 2. No flow problem for the Navier—Stokes equations

In this numerical experiment we investigate the behaviour of our VE schemes considering
the no flow problem adapted to the Navier—Stokes system (4.2.6) from [109, Example 1.1] in the
square domain  := (0,1)%. For this example we take v = 1 and apply homogeneous Dirichlet
BCs. The load term is taken to be f = (0, Ra(3y* —y+1))7. One finds that, the exact solution
of this problem is given by: u = 0 and p = Ra (y3 — %yQ +y— 1—72) , where Ra > 0 is a
parameter. In the simulations we will choose Ra = 1,103, 10°.
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[Re[h™"| Eo(¢) [ro(¥)] Ei(¥) fr1(¥)] Ea(¥) [ra(¥)] ri(w) [Ei(w) Eo(w) [ro(w) Eilp) r1(p)
8 16.4962e-2] — [1.5436e-1] — |2.7533e-1] — [5.6877e-1] — [2.5657e+0 — [6.7839e-1| —
16 (6.7143¢-3) 3.27 2.0444¢-2| 2.91 [7.9373¢-2 1.79 [1.0121e-1| 2.49 | 7.5775¢-1 | 1.75 |4.1231e-1] 0.71
1 [321(6.0116e-4| 3.48 [2.1374e-3| 3.25 [1.9123e-2] 2.05 [1.9189¢-2| 2.39 | 1.6849¢-1 | 2.16 [2.1847e-1/ 0.91
64 14.4368e-5| 3.76 [1.8703e-4| 3.51 |4.1140e-3| 2.21 4.2898e-3| 2.16 | 2.7603e-2| 2.60 [1.0726e-1|1.02
128(2.9310e-6| 3.92 [1.7289e-5| 3.43 [9.2923e-4| 2.14 [1.0391e-3| 2.04 | 3.9418e-3 | 2.80 [5.2786e-2/ 1.02

8 9.7355e-4] — [1.3798e-2] — (9.9287e-2| — [1.2577e-1] — |9.9847e-2| — [1.4151e-1] —
16 15.9194e-5| 4.03 [1.5460e-3| 3.15 [2.4605e-2| 2.01 2.6913e-2| 2.22 | 2.4661e-2| 2.01 |6.9705e-2| 1.02
40|32 |3.7521e-6| 3.97 [1.8487e-4| 3.06 |6.1065e-3| 2.01 |6.2744e-3] 2.10 |6.1113e-3| 2.01 |3.4826e-2|1.00
64 2.3312e-7| 4.00 [2.2728e-5| 3.02 |1.5215e-3| 2.00 [1.5368e-3| 2.02 | 1.5219¢-3 | 2.00 [1.7398e-2|1.00
128|1.4420e-8| 4.01 2.8270e-6| 3.00 |3.7998e-4| 2.00 |3.8216e-4| 2.00 | 3.8001e-4 | 2.00 |8.6956e-3| 1.00

8 9.1889e-4] — [1.2249e-2) — [9.1498e-2| — [1.1041e-1| — |9.1519e-2| — |[7.3490e-2| —
16 15.8013e-5| 3.98 [1.4705e-3| 3.05 2.3104e-2| 1.98 [2.4958e-2| 2.14 |2.3105e-2| 1.98 [2.9005e-2 1.34
10% 32 [3.6731e-6| 3.98 [1.8163e-4| 3.01 [5.7964e-3| 1.99 [5.9274e-3| 2.07 |5.7964e-3 | 1.99 [1.4276¢-2|1.02
64 2.2908e-7| 4.00 [2.2614e-5| 3.00 |1.4503e-3| 1.99 1.4593e-3| 2.02 | 1.4503e-3 | 1.99 [7.1074e-3| 1.00
128|1.4253e-8| 4.00 2.8237e-6| 3.00 |3.6267e-4| 1.99 |3.6336e-4| 2.00 | 3.6267e-4 | 1.99 |3.5491e-3| 1.00

8 [8.6904e-4] — [1.2087e-2] — [8.9298e-2] — [9.1738e-2] — |8.9296e-2| — [2.2102e-1] —
16 5.6880e-5| 3.93 [1.5601e-3| 2.95 [2.2869e-2 1.96 [2.3986e-2| 1.93 |2.2869e-2| 1.96 2.5378e-2| 3.12
103 32 [3.7243e-6| 3.93 [1.9595e-4| 2.99 |5.7405¢-3| 1.99 [5.8758¢-3| 2.02 |5.7405¢-3 | 1.99 [3.1651e-3| 3.00
64 2.3621e-7| 3.97 [2.4484e-5| 3.00 |1.4364e-3| 1.99 1.4456e-3| 2.02 | 1.4364e-3| 1.99 [8.1697e-4]1.95
1281.4789e-8| 3.99 3.0599¢-6| 3.00 |3.5920e-4{ 1.99 |3.5978e-4| 2.00 | 3.5920e-4 | 1.99 |3.6823e-4|1.14

Table 4.1: Test 1. Errors and experimental rates of convergence for the stream-function,
velocity, vorticity and pressure, using the meshes Q) , Re = 1,40,10%,10* and k = 3.

[k[mesh[h~!| dofs [Re = 1]Re = 10[Re = 40|Re = 10*[Re = 10°|
8 | 294 1 5
16 | 1371
2| QF | 325796
64 |23874
128/96855

8 [ 259
16 | 1155
3] QL | 324867
64 |19971
128|80899

Lo o o wollw o o o w
NSO SOINN | ITSN S N

St ot on oot et oot en

oot o ot onf| ot et ot ot |
oo o oo o |

Table 4.2: Test 1. Mesh sizes, degrees of freedom and number of iterations of the Newton
method with respect to parameter Re.

We have approximated the stream-function employing the VEM (4.3.7), with £ = 3 and
using the polygonal meshes Q3 and Q}. Then, we have computed the fluid velocity employing
the postprocess (4.5.2) described in Section 4.5.1. Furthermore, using the discrete stream-
function we have approximated the fluid pressure through the virtual scheme developed in
Section 4.5.2.2, with polynomial degree £ := k — 2 = 1 and the same meshes Q3 and Q}. The
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b & A b © N & o o
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Figure 4.2: Test 1. Exact (top panels) and approximate (bottom panels) solutions stream-
function, pressure and vorticity using the VEMs (4.3.7), (4.5.5) and postprocess (4.5.2), em-
ploying the mesh Q! with A~' = 64, k = 3 and Re = 40.

maximum number of iterations that are required for the Newton method in this example is 3
for all the meshes.

In Figure 4.3(a) we plot the velocity errors in L?-norm and it can be seen that is zero up to
machine precision, regardless of mesh size. However, we notice that the velocity errors slightly
increases as Ra increases, which is also observed in Galerkin schemes for fluid problems that
are pressure robust; see for instance, [114, Example 1]|.

In Figure 4.3(b) we plot the pressure errors in H'-norm and we observe that the errors
converge optimally with the order predicted by our theory in Theorem 4.5.4. Moreover, we
notice that the pressure errors increase as Ra increases, which is expected for this example
(see [109, Example 1.1]).

We point out that our virtual scheme yields an hydrostatic velocity solution unlike the
standard mixed FEMs, where the discrete velocity is far from being equal to zero, even for Ra =
1 (see for instance [109, Figure 1.1]). We recall that our scheme is not pressure robust. However,
this good performance can be attributed to the fact for the stream-function formulation the
divergence-free constraint is satisfied automatically for the velocity field.

4.7.4 Test 3. The lid-driven cavity problem

In our third test, we consider the 2D lid-driven cavity problem for the Navier—Stokes equa-
tions, describing the behaviour of a viscous incompressible flow in a rectangular container whose
upper lid is moving at a uniform velocity and fixed BCs on all other static walls. In particular,



88 Chapter 4. C'-VEMs for the Navier Stokes problem in stream function formulation
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Figure 4.3: Test 2. Velocity (a) and pressure (b) errors using the VEMs (4.3.7) and (4.5.5),
with the meshes QF and Q}, k=3, { =1, v = 1 and taking different values for the parameter
Ra.

we consider the unitary square domain © = (0, 1)?, the uniform velocity is given by u := (1,0)7
and u = (0,0)7 is the BCs on the static walls. Thus, in terms of the stream-function the BCs
are given by: ¢y, = 9,0, = 0 and 9,1, = 1 on the upper lid and ¢y, = 9,4, = 9,1, = 0 on the
static walls. We have tested our VEMs (4.3.7) and (4.5.5), with £ = 3 and ¢ = 1, respectively,
using Re = 100,400, 1000, and setting the source term f = 0. Moreover, we have compared
our results with those obtained in [102] and [51]. For the Newton iteration, we follow the same
procedure as in [143].

1 T T T T = ) 1 T T T T T T 1 T T T 5
T / —— computed
09 09 0 Re=1000 —— computed
O Re=1000
08 08 08

0.7 0.7

Y 2
106 g
505 5
Q Q
N )

04 04

2

0.3 \ 03

02 Re=100 02
Re=400

]
01 O Re=1000 0.4
—— computed

02

0 1 1 1 L 0 1 1 1 1 1 L
05 05 K 0.25 05 0.75 1 002 0 002 004 006 008 01 012 -5 0 5 10 15 20

iiy(05,9) (05,9 0i(05,y)

Figure 4.4: Test 3. Profiles of the velocity, pressure and vorticity (from left to right): -
velocity component, using the mesh Q}, with A~! = 48 and taking different values for Reynolds
number Re; pressure and vorticity profiles along horizontal, with the mesh Q} , with h=! = 128
and Re = 1000.
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In Figure 4.4 we plot the uyj,-velocity component profile along the horizontal centre line in
the 2D lid-driven cavity problem for Re = 100,400 and 1000, computed with uniform mesh Qj
of 48 x 48 elements. Here, the solid lines represent the solution obtained by our VEM (4.3.7)
and the postprocess (4.5.2), while the symbols correspond to the values reported in reference
[102]. Moreover in the same figure, we plot the pressure and vorticity profiles along horizontal
center lines, for Re = 1000, using an uniform mesh Q)  with h=! = 128. Again, the solid lines
represent the solution obtained by our VE scheme (4.5.5) and the postprocess (4.5.2), while
the symbols correspond to the values reported by [51|. The agreement between these solutions
is very good. In each case, no more than 8 iterations were sufficient to achieve tolerance Tol.

4.7.5 Test 4. Solution with less regularity

In this example, we are interesting to examine the accuracy of the scheme (4.3.7) with a exact
solution having less regularity on a nonconvex L-shaped domain. We consider = (—1,1)?\
([0,1) x (—=1,0]). The exact solution is given in polar coordinates by ¥ (r,8) = r*/*sin(%). The
analytical solution contains a singularity at the re-entrant corner of 2, we have ¢ € H/375(Q)
for all € > 0. For this numerical experiment, we have taken ) = 0 as the initial guess.
Table 4.3 shows the errors and experimental convergence rates in H2-norm of our VE schemes
on a mesh with squares elements (as in Q; ), for k = 2 and k& = 3. According to the regularity
of 1, for both polynomial degrees, we expect an order of convergence in H? as O(h'/3), which
is predicted by Theorem 4.4.3.

’ k \ h \ dofs \ Ea (1)) \ ra(1)) \ iter H k \ h \ dofs \ Ey (1)) \ ra(1)) \ iter ‘
1/4 99 7.1728e-1 — 4 1/4 179 | 6.4424e-1 — 4
1/8 483 | 5.7219e-1 | 0.32 1/8 835 | 5.1089e-1 | 0.33
2 11/16 | 2115 | 4.5318e-1 | 0.33 1/16 | 3587 | 4.0540e-1 | 0.33
1/32 | 8835 | 3.5945e-1 | 0.33 1/32 | 14851 | 3.2176e-1 | 0.33
1/64 | 36099 | 2.8526e-1 | 0.33 1/64 | 60419 | 2.5538¢e-1 | 0.33

NS
w
NN

Table 4.3: Test 4. Errors for the stream-function variable in H:-norm on the L-shaped using
with square elements Q} and k = 2, 3.

4.7.6 Test 5. The Navier—Stokes system with BCs on the pressure

As last experiment, we test the scheme presented in Section 4.6. We consider the domain
Q) := (0,1)? and the analytic solution to the Navier—Stokes system given by:

U(x,y) = —%(1 — x)? cos(27x) cos(2my), u(z,y) = curl ¢,

p(x,y) =sin((7/2)x)cos(2my) +p  and  w= —A.

Table 4.4 shows the errors and convergence rates in H2-norm for the stream-function, by using

the VEM (4.6.4). Moreover, we show the errors and convergence rates in H', L2-norm for the
velocity and vorticity, respectively, employing the postprocess 4.5.1. For this experiment we
have used the mesh Q} and the polynomial degrees k = 2.
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’ k ‘ h ‘ dofs ‘ Ey () ‘ ro () ‘ Ei(u) ‘ ra(u) ‘ Ep(w) ‘ ro(w) ‘ iter ‘
1/4 129 | 5.5066e-1 — 1.2499e+0 | — | 4.0096e-1 — 3
1/8 545 | 2.8697e-1 | 0.94 | 6.673be-1 | 0.90 | 1.4378e-1 | 1.47
2 1/16 2241 | 1.4295e-1| 1.00 | 3.3722¢-1 | 0.98 | 4.9535e-2 | 1.53
1/32 9089 | 7.1421e-2 | 1.00 | 1.6863e-1 | 0.99 | 2.0831e-2 | 1.24
1/64 | 36609 | 3.5710e-2 | 0.99 | 8.4213e-2 | 1.00 | 9.8326e-3 | 1.00

= e e

Table 4.4: Test 5. Errors in norm H2- H!- and L2-norms for stream-function, velocity and
vorticity fields, respectively, obtained with the VE scheme (4.6.4), the family mesh Q} and
k=2.



Chapter 5

A fully-discrete virtual element method
for the nonstationary Boussinesq
equations in stream-function form

5.1 Introduction

The Boussinesq system is typically used to describe the natural convection in a viscous
incompressible fluid, which consists of coupling between the Navier-Stokes equations with a
convection-diffusion equation. Such coupling is done by means of a buoyancy term (in the
momentum equation of the Navier—Stokes system) and convective heat transfer (in the energy
equation). Applications of this fluid-thermal system appears in several engineering processes,
such as, industrial ovens, cooling procedures (cooling of steel industries, electronic and electric
equipments, nuclear reactors, etc). Moreover, this physical phenomena appears in oceanography
and geophysics when studying oceanic flows and climate predictions.

Due its relevance and presence in different applications, several works have been devoted to
study these equations (and some variants). For the analysis of existence, uniqueness and regu-
larity of the solution, we refer to [140, 121]. Besides, over the last decades several discretizations
have been employed to solve this system; see for instance [47, 50, 150, 161, 144, 9, 82, 85, 11]
and the references therein, where the steady and unsteady regimens, temperature-dependent
parameters problems have been studied, considering the classical velocity-pressure-temperature
and pseudostress-velocity-temperature formulations.

Typically, in the existing literature, the majority of the discretizations for the fluid part
involve the standard velocity—pressure formulation for the Boussinesq system. However, some
researchers have developed numerical methods by using the stream-function—vorticity and pure
stream-function approaches to approximate this system. For instance, in |148| a finite element
discretization is considered to solve the problem in stream-function—vorticity-temperature form,
numerical solutions are obtained for the natural convection in a square cavity and compared
with some results available in the literature. In [152] a fourth-order compact finite differ-
ence scheme is formulated for solving the steady regimen, by using also the stream-function—
vorticity—temperature formulation. Numerical experiments are also presented. More recently,
in [120, 160], the authors present an analysis of stability and convergence for a fourth-order finite
difference method for the unsteady regimen of Boussinesq equations with the stream-function—
vorticity—temperature approach. Numerical results are provided in [120]. On the other hand,

91
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in [43], the authors employed a C" finite element method to approximate the stream-function
variable. Numerical solution for the 2D natural convection in a square cavity are presented and
compared with benchmark results [155].

For two dimensional fluid problems, the formulation in terms of the stream-function presents
several attractive features, among these we can mention: the velocity vector and pressure fields
are not present in the formulation, instead only one scalar variable (the stream-function) is the
main unknown to approximate. By construction the incompressibility constraint is automati-
cally satisfied. Moreover, the resulting trilinear form in the momentum equation is naturally
skew-symmetric, which allows more direct stability and convergence arguments. On the other
hand, in comparison with the stream-function—vorticity form, our approach avoid the difficul-
ties related with the definition of the boundary values for the vorticity field, present in such
formulation.

Nevertheless, the construction of subspaces of H? (space where the stream-function belongs)
by using finite element method involve high order polynomials and a large number of degrees
of freedom, which are considered a difficult task principally from the computational viewpoint,
even for triangular decompositions. As an alternative to avoid the aforementioned drawback, we
consider the approach presented in [58, 77| to introduce C'-virtual element schemes of arbitrary
order k > 2, to approximate the stream-function variable of the Boussinesq system.

The Virtual Element Method (VEM) were introduced in the seminal work [27] as an ex-
tension of Finite Elements Method (FEM) to polygonal or polyhedral decompositions. In this
first work the Poisson equation is used to illustrate the main ideas of VEM approach. The
virtual element spaces are constituted by polynomial and nonpolynomial functions, the degrees
of freedom must be chosen appropriately so that the stiffness matrix and load term can be
computed without computing these nonpolynomial functions. Later on, in [58] is introduced a
new family of C'-virtual element of high order & > 2, to solve Kirchhoff-Love plate problems,
which in the lowest order polynomial degree employed only 3 degrees of freedom per mesh
vertex (the function and its gradient values vertex). This fact represents a very significant
advantage over C' schemes based on FEM. Moreover, in [36, 19], the authors discuss the ap-
plication of VEM to construct finite dimensional spaces of arbitrarily regular C*, with a > 1,
where promising results have been observed to solve equations involving high order PDEs. In
the last year a wide variety of second- and fourth-order problems have been discretized by using
VEM. Due to the large number of papers available in the literature, we here limit ourselves in
citing some representative articles within the area of fluid mechanics, where several models have
been addressed with the conforming VEM approach: the Stokes equations [17, 76, 34, 157], the
Brinkman model [60, 133]|, Navier-Stokes and incompressible flows [35, 41, 97, 31, 42, 83|, the
Quasi-Geostrophic equations of the ocean [136] and Boussinesq system [99, 21|, where different
formulations have been considered.

According to the previously discussed, in the present contribution, we are interested in
further exploring the ability of VEM to approximate coupled nonlinear fluid flow problems
considering the stream-function approach. More precisely, we develop and analyze a fully-
discrete VE scheme for solving the nonstationary Boussinesq system. Under assumption that
the domain is simply connected and by using the incompressibility condition of the velocity field,
we write a equivalent variational formulation in terms of the stream-function and temperature
unknowns. The discretization for the spatial variables is based on the coupling of C'- and
CY- conforming virtual element approaches [58, 27], for the stream-function and temperature
fields, respectively, and we handle the time derivatives with a classical backward Euler implicit
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method. Employing the discretizations mentioned above, we propose a fully-discrete scheme of
high order, which is fully-coupled, implicit in the nonlinear terms and unconditionally stable.
By using the fixed point theory, we establish the corresponding existence of a discrete solution
and, under a small time step assumption, we prove that such discrete solution is also unique.
Moreover, employing the natural skew-symmetry property of the resulting discrete trilinear
form (in the momentum equation) we provide optimal error estimates in H%- and H'-norms for
the stream-function and temperature, respectively.

The remainder of this chapter has been organized as follows: In Section 5.2 we recall the un-
steady Boussinesq equations in its standard velocity—pressure—temperature formulation. More-
over, we write a weak form of the system in terms of the stream-function and temperature
variables. We finish this section by recalling the corresponding stability and well-posedness
results for the continuous problem. In Section 5.3 we present the VE discretization, intro-
ducing the polygonal decomposition and mesh notations, the construction of stream-function
and temperature VE spaces along with their corresponding degrees of freedom, the polynomial
projections and the construction of the multilinear forms. In Section 5.4 we present the fully-
discrete VE formulation and provide its stability and well-posedness. In Section 5.5 we derive
error estimates for the stream-function and temperature fields. Finally, three numerical exper-
iments, including the solution of the 2D natural convection benchmark problem, are presented
in Section 5.6, to illustrate the good performance of the scheme and confirm our theoretical
predictions.

5.2 The continuous problem

5.2.1 The time dependent Boussinesq system

In this work we are interested in approximating the solution of the nonstationary Boussinesq
system, modeling incompressible nonisothermal fluid flows. The system consists of a coupling
between the Navier—Stokes equations with a convection-diffusion equation for the temperature
variable. The coupling is by means of a buoyancy term (in the momentum equation of the
Navier-Stokes system) and convective heat transfer (in the energy equation). More precisely,
given suitable initial data (ug,6p), the aforementioned system of equations are given by (see
[140]):

du—vAu+ (u-Vju+Vp—gd=£f, in Qx(0,7),
diva=0 in Qx(0,7),

u=20 on ['x(0,7),

u(0) = uy in Qatt=0,

(p, o =0

00 — kKAO+u -Vl = fy in Qx(0,7),

=0 on I'x(0,7),

6(0) = 6y in Qatt=0,

(5.2.1)

where u : Q x (0,7) - R?, p: Q x (0,7) = Rand 6 : Q x (0,7) — R denote the velocity,
pressure and temperature fields. The parameters v > 0 and x > 0 are the viscosity fluid and
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the thermal conductivity, respectively. The functions £, : @ x (0,7) = R?, fp: Qx (0,7) - R
is a set of external forces and g : 2 x (0,7) — R? is a force per unit mass.

In next subsection, by using the incompressibility property of the velocity field, we will
write an equivalent weak formulation of the system (5.2.1) in terms of the stream-function and
temperature variables.

5.2.2 The time dependent stream-function—temperature formulation

Let us introduce the following space of functions belonging to H(€) with vanishing diver-

gence:
Z:={veH)Q):divv=0 in Q}.

Since 0 C R? is simply connected, a well known result states that a vector function v € Z if
and only if there exists a scalar function ¢ € H2(Q) (called stream-function), such that

v = curl ¢ € H}(Q).
The function ¢ is defined up to a constant (see [103]|). Thus, we consider the following space
H3(Q) ={peH* Q) : ¢ =0np=0 on T}.

Then, choosing ¥(t) € H2(2) the stream-function of the velocity field u(t) € Z (i.e. u(t) =
curl ¢(t)) in the momentum equation of system (5.2.1), testing against a function v = curl ¢
with ¢ € HZ(Q) and applying twice an integration by parts, we have

' 2. T2 , _ . — .
/chrl (Op)) curlng—V/QD Y : D ng—/QAz/qurlw Vo /Qgﬁ curl ¢ /Qf¢ curl ¢,

for all ¢ € H2(2). On other hand, multiplying by v € H}(2) and integrating by parts in the
energy equation of system (5.2.1), we obtain

/@«91}—1—&/V@-Vzw—/(curlw-VG)v:/fgv Yo € HE(Q).
Q Q Q Q

From the above identities, we obtain the following weak formulation for system (5.2.1): given
o € HY(Q), 6y € L2(Q), g € L>(0,T;L>(1)), and the external forces f;, € L2(0,T;L*(Q)), fo €
L2(0,T;L%(Q)), find (v,0) € L2(0,T;H2(Q2)) x L0, T; H{(2)) such that

M7 (0:0,v) + kA7 (0,v) + Br(¢;0,v) = Fy(v) Vv € H5(Q), (5.2.2)
¥(0) = tho, 0(0) = b,
for a.e. t € (0,7), where the bilinear forms Mp(-,-), Mr(-,-), Ar(-,-) and Ar(-,-) are given by

Mp(-,-) s HY(Q) x H3 () — R, Mp(p, @) = /chrl ¢ - curl ¢, (5.2.3)

Mrp(-,-) : Hy () x Hi(Q) — R, Mr(v,w) = / vw, (5.2.4)
Q

Ap  Hj () x H3(Q) — R, Ap(p, ¢) == / D%p : D¢, (5.2.5)

Ar  Hy(Q) x Hy(Q) — R, Ar(v,w) = / Vo - Vuw, (5.2.6)
Q
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whereas the convective trilinear forms Bg(-;-, ) and Br(+;-,-) are defined by

Br : H3(Q) x H3(Q) x HA(Q) = R,  Br((;p,¢) = / Al curl ¢ - Vo, (5.2.7)
Q

Br : H3(Q) x Hy(Q) x Hy(2) = R,  Br(p;v,w) = /(curl @ - Vo)w. (5.2.8)
Q

The bilinear form C(-,-) associated to the buoyancy term is given by
C: H}(Q) x HA(Q) — R, C(v,¢) = / gv - curl ¢ (5.2.9)
Q
and the functionals Fi;(-) and Fy(-) are given by

F,: H Q) — R, Fy() ::/wa-curlgb, (5.2.10)

Fy: Hy(92) — R, Fy(v) == Qfgv. (5.2.11)

We can observe by a direct computation that the trilinear form Br(-;-,-) defined in (5.2.8) is
skew-symmetric, i.e.,

Br(p;v,w) = —Br(p; w,v) Vo € HA(Q) and Vo,w € H(Q).

Therefore, the bilinear form Br(+;-,-) is equal to its skew-symmetric part, defined by

1
Baew(p3v,w) i= 5(Br(pv,w) = Br(piw,v)) - Vo € Hy(Q) and Vo, w € Hy(Q).

(5.2.12)
According with the above discussion, we rewrite system (5.2.2) in the following equivalent for-
mulation: given the initial conditions (¢, 6p) € H{(Q)xL%(Q) and the forces £, € L2(0,T; L*(Q2)),
fo € L2(0,T;L3(Q2)) and g € L>°(0,T;L>*(Q)), find (¢,0) € L*(0,T;H2(Q)) x L2(0, T; HY(Q))
such that, for a.e. t € (0,7)

Mg (0, ¢) + vAp(¥, 6) + Be(;1,¢) — C(0,0) = Fy(¢) Vo € Hy(Q),
M7 (0:0,v) + KAT(0,0) + Baew (¥ 0,0) = Fy(v)  VYov € Hy(Q), (5.2.13)

¥(0) = tho, 0(0) = 0o,

I
S

5.2.3 Well-posedness of the weak formulation

In this subsection we recall some basic properties of the continuous forms and the existence
and uniqueness properties of the solution to problem (5.2.13).

Lemma 5.2.1. For all (, , ¢ € HZ(Q) and for each v,w € HY(Q), the forms defined in (5.2.3)-



96 Chapter 5. A VEM for the nonstationary Boussinesq equations

(5.2.12) satisfy the following properties:
|Mp(p,0)| < Curellelhalldllie  and  Mp(s,¢) > 6]} o,

[Mr(v,w)] < Corpllvlloellwlloe  and  Mr(v,v) > |lv]Gq,
[Ar(p, )| < Capldllaaléllze  and  Ap(d, ) = a3,
[Ar(v,w)| < Cagllvlhallwle  and  Ar(v,0) > aa vl
[Br (G0, 0)| < Cpg [[Cl2allollznll¢llze and  Br( ¢, ¢) =0,
| Bakew (G5 0, )| < Cy [[Cll2ellvllellwlie - and  Baew(G50,v) =0,
1C(v, )| < llgllcellvlloalloll.o;

[Fy(0)] < Crlifyllocllollie,  [Fo(v)] < Cryllfollogllvlloe-

The equivalence between the (weak form of) problem (5.2.1) and its stream-function formu-
lation (5.2.13) is well known and easy to check. The couple (¢, 0) satisfies (5.2.13) if and only
if there exists a unique p such that the triple (u,6,p) in L*(0,7; HL(Q)) x L2(0, T; H}(Q)) x
L2(0,T; L3(€)) solves (the variational formulation of) (5.2.1), where u = curlt. Therefore the
existence result for problem (5.2.13) follow immediately from known results for (5.2.1) (see for
instance [150]) and the uniqueness follow by combining the arguments used in [140].

Theorem 5.2.1. Problem (5.2.13) admits a unique solution (1, 0), satisfying 1 € L*(0,T; H3(2))N
L>(0, T; Hy(Q)) and 6 € L2(0,T; H{(2)) NL®(0, T; L2(Q)). Furthermore there exists a positive
constant C', such that

HwHL‘X’(O,T;H})(Q)) + WHL?(O,T;H%(Q)) + H9HL°°(0,T;L2(Q)) + HQHLQ(O,T;H%)(Q))
< C (s llzomiz ) + follizomrz@) + 0olloq + |tolie) -
Now, we recall the Ladyzhenskaya inequality (see for instance [11, Lemma 2.2|), needed in
the sequel:
IVl < 28 IVIEalvide v € H(Q). (5:2.14)
We close this section with the following remark.

Remark 5.2.1. For the bilinear form Ap(-,-) defined in (5.2.5), we have the following classical
identity:

Ap(p, ) = /ﬂ ApAG Vg6 € HE(Q). (5.2.15)

We recall that at discrete level the representations (5.2.5) and (5.2.15) will lead to different
approzimations, in general. In next section we will consider the representation (5.2.5), i.e.,
Ap(p,0) = |, D¢ : D?¢, in order to construct the projection %P (see (5.3.2)). However, we
also propose an alternative discretization inspired by (5.2.15) in Remark 5.3.2 below.

5.3 Virtual elements discretization

In this section we will introduce C'- and C°-conforming schemes of arbitrary order k > 2
and ¢ > 1, for the numerical approximation of the stream-function and temperature unknowns
of problem (5.2.13), respectively. First, we start by introducing some mesh notations together
with the respective local and global virtual spaces and their degrees of freedom. Moreover,
we introduce the classical VEM polynomial projections and we present the discrete multilinear
forms.
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5.3.1 Polygonal decompositions and notations

Henceforth, we will denote by K a general polygon, e a general edge of 0K, hx the diameter
of the element K and by h. the length of edge e. Let {75, }r>0 be a sequence of decompositions
of € into non-overlapping polygons K, where h := maxgc7, hx. Moreover, Nk denotes the
number of vertices of K and we define the unit normal vector ng, that points outside of K and
the unit tangent vector tx to K obtained by a counterclockwise rotation of ng.

For each integer n > 0, we define the discontinuous piecewise n-order polynomial by

Po(Th) = {q € L*(Q) : q|lx € Po(K) VK € Ty}
Besides, for s > 0, we consider the broken spaces
H*(Th) = {6 € L*(Q) : ¢|x € H'(K) VK € Tu}
1/2
endowed with the following broken seminorm: |¢|s := (ZKeTh 02k) -

For the theoretical convergence analysis, we suppose that for all h, each element K in the
mesh family {7 }5>0 satisfies the following assumptions |27, 77| for a uniform constant p > 0:

A1l : K is star-shaped with respect to every point of a ball of radius greater or equal to phg;

A2 : every edge ¢ € OK has the length greater or equal to phg.

5.3.2 Virtual element space for the stream-function

In the present section we introduce a virtual space of order £ > 2 used to approximate the
stream-function unknown. R s

For each polygon K € T;, and every integer k > 2, let k := max{k,3} and W?(K) be the
finite dimensional space introduced in [77]:

WHEK) == {¢), € H}(K) : A2y, € Py o(K), dnlox € CO(IK), ol € Pr(e),
V¢h|8l{ € CO(aK),ane;(¢h € Pk_l(e) Ve € 8K} .
Next, for ¢, € WZ(K), we introduce the following set of linear operators:
e D1 : the values of ¢,(v;), for all vertex v; of the polygon K;
e Dw2 : the values of hy,Vop(v;), for all vertex v; of the polygon K;
e Dw3: for k£ > 3, the moments on edges up to degree k — 3:
(¢, One. 1) Vg € My_3(e), Vedge e;

e Dw4 : for k£ > 4, the moments on edges up to degree k — 4:

he ' (4, dn)oe Vg € Mg_4(e), Vedge e;

e Dw5 : for k£ > 4, the moments on polygons up to degree k — 4:

hil (g, dn)o.x Vg € M _4(K), Vpolygon K,
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where for each vertex v;, we chose hy, as the average of the diameters of the elements having
v; as a vertex and M, (K') denote the scaled monomials of degree n, for each n > 0 (for further
details see [58]).

In order to construct an approximation for the bilinear form Ag(-,-), we consider the oper-
ator Py : C°(OK) — Po(K) defined by the following average:

Nk
Poop, = NLK Z n(vi), (5.3.1)
=1

where v;,1 < i < Nk, are the vertices of K. Then, for each polygon K, we define the projector:
5 WHK) — Pu(K) € WH(K),
as the solution of the local problems

AR (¢ — TP, q1) =0 Vg, € Py(K)

’ 5.3.2
Po(dn — I3 ¢) = 0, Po(V(p — I13°4)) =0, 532)

where A (-, ) is the restriction of the global bilinear form Ag(-,-) (cf. (5.2.5)) on each polygon
K.

Remark 5.3.1. The operator H’;(’D : WZ(K) — Pr(K) is explicitly computable for every ¢y, €
WHK), using only the information of the linear operators Dw1l — Dwb; see for instance

[77, 133].

Now, we will present the local stream-function virtual space. For any K € 7, and each
integer k > 2, we consider the following local enhanced virtual space

WE(E) = {0 € WE(K) (47 on — T 0n)oxe =0 V" € Mi_y(K) UMG_y(K) b, (5.3.3)

where M;_,(K) and Mj_,(K) are scaled monomials of degree k — 3 and k — 2, respectively (see
[7]), with the convention that M*,(K) := ). For further details, see for instance [77] (see also
58, 18, 133]).

For k > 2, we introduce an additional projector, which will be used to build an approxima-
tion of the bilinear form Mpg(-,-). Such projector HI;{’VL : WZ(K) — Pp(K) C WZ(K) is defined
as the solution of the local problems:

ME (o, — H’;évl@u q:) =0 Vi, € Pr(K),
Po(V(on — 1Y ¢1)) = 0,

where ME (-, -) is the restriction of the global bilinear form Mp(-, ) (cf. (5.2.3)) on each polygon
K.

We summarize the main properties of the local virtual space W} (K) defined in (5.3.3) (for
the proof, we refer to |7, 58, 77, 133]).

o P(K) C WHK) C WE(K);

e The sets of linear operators Dw1l — Dwb5 constitutes a set of degrees of freedom for
Wi(K);
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e The operators II%° : WI(K) — P(K) and H’;(’vL : WHK) — P(K) are computable
using only the degrees of freedom Dw1 — Dw5.

Now, we present our global virtual space to approximate the stream-function of the Boussi-
nesq system (5.2.13). For each decomposition Ty, of € into simple polygons K, we define

Wi = {¢n € HY(Q) : ¢p|x € WH(K) VK € T}

5.3.3 Virtual element space for the temperature

In this subsection we will introduce a C°-virtual element space of high order £ > 1 to
approximate the temperature field of problem (5.2.13). To this end, for each polygon K € Ty,
we consider the following finite dimensional space (see |7, 28, 65]):

H(K) := {w;, € HY(K)NC°(OK) : Awy, € Po(K), wy|. € Pyle) Ve € IK}.

For each wy, € ﬁ?(K ) we consider the following set of linear operators:
e Dyl : the values of wy(v;), for all vertex v; of the polygon K.

e Dy2: for £ > 2, the moments on edges up to degree ¢ — 2:

he_l(Qa wh)O,e vq € MZ—2(6)7 vedge €;

e Dy3: for ¢ > 2, the moments on element K up to degree ¢ — 2:

h;(2(Q7 wh)O,K \V/q € Mf*Z(E% vaIngH K7

where M,,(K) denote the scaled monomials of degree n, for each n > 0 (for further details
see |7, 65]). Now, we define the projector IT}.* : H¥(K) — Py(K) C H}(K), as the solution of
the local problems:

A{ﬁ(wh—ﬂz’ewh,m) =0 Vry E]P)E(K),

Po(wh — HIV(’ZU}h) = 0,

where AK(-)-) is the restriction of the global bilinear form Az(-,-) (cf. (5.2.6)) on each polygon
K and the operator Py(-) is defined in (5.3.1). We have that the operator IT}* : H?(K) — Py(K)
is computable using the set Dyl — Dy3 (see for instance, [7, 28, 65]). In addition, by using
this projection and the definition of space ITIZL(K), we introduce our local virtual space to
approximate the temperature field:

HE () = {wh e MK : (r*,wp — T wn)oe =0 V™ € MIE(K) U M;,I(K)} ,

where M (K) and Mj_,(K) are scaled monomials of degree ¢ and ¢ — 1, respectively, with the
convention that M*,(K) := 0 (see |7, 65]).

Now, we summarize the main properties of the local virtual spaces H} (K) (for a proof we
refer to |7, 28, 65]):
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o Py(K) C HA(K) C HIK);

e The sets of linear operators D1 —Dg3 constitutes a set of degrees of freedom for H} (K);

e The operator IT}* : H(K) — Py(K) is also computable using the degrees of freedom
Dyl — Dgy3.

Next, we present our global virtual space to approximate the fluid temperature of the
Boussinesq system (5.2.13). For each decomposition Tj, of € into simple polygons K, we define

H? = {wh € H(l)(Q) : wh|K € H?(K) VK € 771} .

5.3.4 L’-projections and the discrete forms

In this subsection we introduce some functions built from the classical L2-polynomial pro-
jections, which will be useful to construct an approximation for the continuous multilinear
forms defined in Section 5.2.2. We start recalling the usual L?(K)-projection onto the scalar
polynomial space P, (K), with n € NU {0}: for each ¢ € L?(K), the function IT%¢ € P, (K) is
defined as the unique function, such that

(G, @ =)o =0 Vg, € Py(K). (5.3.4)

An analogous definition holds for the L?( K)-projection onto the vectorial polynomial space
P, (K), which we will denote by IT}.

We recall that for all sufficiently regular ¢ (for the right hand side to make sense) there
exists C' > 0, independent of K and hg, such that (see [35, Page 10]):

% 0|lLary < Cllo|la and % llo.x < [|P]oxk- (5.3.5)

The same properties hold for the vectorial version.
The following lemma establishes that certain polynomial functions are computable on W} (K),
using only the information of the degrees of freedom Dw1 — Dw5 (see for instance [77, 133]).

Lemma 5.3.1. For k > 2, let 152 : 12(K) — Py o(K) and TI5 ! : L2(K) — P (K)
be the operators defined by the relation (5.3.4) and by its vectorial version. Then, for each
on € WH(K) the polynomial functions

52,  TE2A¢,, TIE'Veé, and T 'curl ¢
are computable using only the information of the degrees of freedom Dw1l — Dwb5.

For the space H}(K) and its degrees of freedom Dyl — Dg3, we have the following result
(see for instance |28, 65]).

Lemma 5.3.2. For £ > 1, let I : LK) — Py (K), % : L2(K) — Py(K) and T -
L*(K) — P,_1(K) be the operators defined by the relation (5.3.4) and by its vectorial version,
respectively. Then, for each wy, € HY(K) the polynomial functions

Hfglwh, Hﬁ(wh and H%_1th

are computable using only the information of the degrees of freedom Dyl — Dy3.
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Now, using the functions introduced above, we will construct the discrete version of the forms
defined in Section 5.2.2. First, let s : Wi (K) x Wi(K) — R and s2 : WP(K) x WiHK) — R
be any symmetric positive definite bilinear forms to be chosen to satisfy:

1
coME (6ny 1) < s5c(Dn, 0n) < ctME (6n, 6n) Vi, € Ker(IT:"),
o AR (Bns 1) < 5B (I dn) < e3AL (Y0, dn) Vo, € Ker(ITy"),

with c¢g, ¢1, o and c3 are positive constants independent of h and K. We will choose the following
representation satisfying (5.3.6) (see [133, Proposition 3.5]):

(5.3.6)

dof
NK

s (@n, on) = hi Z dof?vZ(K)(goh)dofva(K)(gbh) and

Ndof

< (ons dn) - Zdofw wdof} 9 (g,),

where Nt := dim(W?(K)) and the operator dofy]’;(K)(gﬁ) associates to each smooth enough
function ¢ the jth local degree of freedom dof;}VZ(K)(gb), with 1 < j < Nt
On each polygon K, for all ¢, ¢, € WP(K) we define the local discrete bilinear forms
MPER(-,) and ARR(,) as follows
1 1 1 1
M (o, ) = M?(H];%v on, 1Y o) + s5 (1 — ;Y )@m( — 1y )bn) (5.3.7)
A" (ons dn) = AR (T on, T 60 ) + s ((1 = T ), (1 — )<Z5h) (5.3.8)

For the approximation of the local trilinear form BE(-;-,-), for all (, on, dn € WH(K), we
consider

B (G ony 61) = /K [(I2AG,) (I eurl )] - TV (5.3.9)

For the treatment of the right-hand side associate to the fluid equation, we set the following
local load term:

Fg’K(qﬂh) = / £,(t) - 5 tcurl ¢y, Vo, € WH(K), fora.e. tc(0,T).
K
The following result establishes the usual k-consistency and stability properties for the
discrete local forms M2 (-,-) and A% (..).

Proposition 5.3.1. The local bilinear forms defined in (5.2.3), (5.2.5), (5.3.7) and (5.3.8),
satisfy the following properties:

e k-consistency: for all K € Ty, we have that
Mp*(a.6n) = ME(a,0n),  Va € Pi(K), Von € WL(K)

AR (a4, 6n) = AF (g, 0n) Vg € Pr(K), Von € Wi(K).
o stability and boundedness: there exist positive constants «;,i = 1,...,4, independent of
K, such that:
ME (én, dn) < Mp"™ (dn, dn) < oM (¢n, d1) Vo, € WH(K),

az AR (B, dn) < AR™ (Sny dn) < AR (61, o) Vo, € WR(K).
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Proof. The proof follows standard arguments in the VEM literature (see |18, 27, 28]). O

Now, we continue with the construction of the forms associated to the energy equation.
First, let s%(-,-) and s}.(-,-) be any symmetric positive definite bilinear forms such that

c4M7{((vh, vp) < s?{('z)h,vh) < C5M:,{<<Uh, Up) Yoy, € Ker(H%),

(5.3.10)
CGAg(wL, vp) < sz(vh,vh) < C7A¥(Uh, vp) Yy, € Ker(HX’Z),

for some positive constants c4, ¢5, ¢g and ¢y, independent of h and K. We will choose the
classical representation for these stabilizing forms satisfying property (5.3.10) (see |33, 55, 65]):

dim(H% (K)) . T
% (v, wy,) = h% Z dofjf( )(vh)dofjf( )(wh),
j=1
dim(H} (K)) T T
sy (vp, wp) = Z dofje( )(vh)dofje( )(wh),

j=1

h
where the operator dof?‘Z (K)(v) associates to each smooth enough function v the jth local degree

of freedom dof?‘?(K) (v), with 1 < j < dim(H}(K)). Then, for all v, w;, € H}(K), we set the
following approximation for the forms MX(-,-) and A% (,-) (cf. (5.2.4) and (5.2.6))

ME™ (vn,wy) i= ME (Ievp, ) + s% (1= T vy, (T — T4 )w,)

ARE (v wp) == / 15 'V, - T Vay, + 53 (1 — T Y op, (T — T2 Ywy,).
K

We have that the bilinear forms Mj*(-,-) and A} (-, ) satisfy the classical /-consistency and
stability properties (analogous to Proposition (5.3.1)). For further details, see [27, 28, 65].
To approximate of bilinear form C¥(-,-), we set

CM K (wy, op) = / gl wy, - T curl ¢, Vwy, € HY(K), Yo, € WHK).
K

Now, for each ¢, € W (K) and wy,, v, € Hf(K), we consider the following discrete trilinear
form
By (on; vn, wp,) 1:/ (I 'eurl ¢y, - T Vo) T w,.
K
Then, for the skew-symmetric trilinear form BX_ (- -) (cf. (5.2.12)), we set the following
approximation:

1

BYE (on; on, wp) = §(B¥’K(90h; vn, wp) — BE (on;wn, vp)).

For the treatment of the right-hand side associated to the temperature discretization, we
set following local load term

FR () 1= /K M £, (t)o, = /K FOM s, Vo, € HY(K) for ace. t € (0,T).
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Thus, for all ¢y, @n, o € W}, we define the associated global forms My, A}, Bf, and F)) in
the usual way, by summing the local forms on all mesh elements. Analogously, we define the
associated global forms MR C" B Fp for all vy, w, € HE. For instance

M?‘ : WZ X WZ — Ra M}]«E<90h; ¢h> = Z M;"K<90h7 (bh)
KeTy,

We recall that the forms defined above are computable using the degrees of freedom. In
addition, we have that the trilinear forms are immediately extendable to the whole continuous

spaces.
In next result we summarize some properties of the discrete global forms defined above.

Lemma 5.3.3. For each (y,, pn, ¢n € WP and each vy, wy, € HY, the global forms defined above
satisfy the following properties:

[Mg(en, on)l < Cuelignlhallonle  and  Mg(én, én) = Qe llonlli o
| M2

(
(

| A% (on, dn
(

Coir[vnlloollwalloa  and — Mi(on, va) > Qnillvalls o,
Capllenlloollgnllo  and  AL(dn, ¢n) > Qapllonllse;
Ca and — Ap(vn, vp) > Qagllvalli g,

)| <
)|
)|
)|
| Bi(Chs oy )] < ép“Ch oo and  Bp(Chs dn, é1) =0,
)|
)|
)| <

IN

Up, Wh

IN

IN

’A Vp, Wh

/\

| Bl e (Chi vy wp)| < Ch,, HCth,QHUhHLQHU}hHLQ and Bl (G v, vp) =0,
1C™(vn, dn)| < |lgllsoellvnlloelonllie,
|F): (¢ folloallénlle and [Fy(vh)| < Crllfo

pr

where all the constants involved are positive and independent of mesh size h.
We close this section with the following remarks.

Remark 5.3.2. We can propose an alternative discretization inspired by (5.2.15), which is
given by:

B(on, bn) Z/Aﬂw n AT + sy (1= TP ), (1= 1157 ),

KeTy,

for all @, ¢or, € WI, which is also fully computable by using the degrees of freedom Dw1—Dwb.
Nevertheless, in the present work we will stick to the choice (5.3.8).

Remark 5.3.3. If £ is given as an explicit function, then we can consider the following alter-
native discrete load term

Fl(¢n) : Z/rotﬁ/, DI 2, Yo, € W

KeTy,

which 1s also computable using the degrees of freedom Dw1 — Dw5.
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5.4 Fully-discrete formulation and its well posedness

In order to present a full discretization of problem (5.2.13) we introduce a sequence of time
steps t, = nAt, n =0,1,2,..., N, where At = T/N is the time step. Moreover, we consider
the following approximations at each time t,: ¥} = ¢,(t,) and 6} = 0(t,). For the external
forces, we introduce the following notation: £} := £, (t,), fj := fo(t,) and g" := g(t,,).

We consider the backward Euler method coupled with the VE discretization presented in
Section 5.3, which read as follows: given (9, 69), find {(v%, 00} _, € Wh x H? such that

n—1

i (VBT ) AR ) + B U on) = CY0R on) = Fion)
) (5.4.1)

o — oy

M (S 0) 4 RGO 00) + Bl (1508 00) = F ),

for all (¢, vn) € Wh x H. The functions (9, 89) are initial approximations of (1, 6;) at t = 0.
For instance, we will consider 9} := Sp1)g (see (5.5.1) below) and 6 := P}, with P, (-) being
the energy operator associated to the H'-inner product (for further details, see for instance
[153, Equation (9)]). We now recall local inverse inequalities for the virtual spaces W7 (K) and
H (K) (see |37, 74]), for all ¢, € W} (K) and for all v;, € H}(K), we have

|Pnlox < Cimhit|Onhix  and  |opli e < Cinvhi |lonllo.x- (5.4.2)
In what follows, we will provide the well-posedness of the fully-discrete formulation (5.4.1).

Theorem 5.4.1. Let @ := min {Q,., Q. } and v := min{Q4,v, da,.k}, where Qpr,., Qpry, QAL
and 0 4, are the constants in Lemma 5.3.3. Assume that

Q-+ At(y—Cy) >0, (5.4.3)

where Cg = ||g||1.o(0,r;L(2))- Then the fully-discrete scheme (5.4.1) admits at least one solution
(Y, 0m) € Wi x HE at every time step t,,, withn=1,..., N.

Proof. For simplicity we set XZ’(Z := W/ x H} and we endow this space with the following
equivalent norm:

11(@n wa)lll := (Ionlltq + lwonl5)z  V(en,wn) € X,

Next, for 1 <n < N, let (71,0071 € X} Thus, for any (¢n,0) € X}, we consider the
operator ® : X}, — (X} ,)* defined by

(D(n, 0n), (G, wh)) == Mp(n, ¢n) — Mp(Wy ™", on) + vALAR (U, é1)
+ AtBE(n; tn, dn) — AF)(dn) + ME(On, wi) — MEOF ' wn) + kALAL (O, wy,)  (5.4.4)
+ AtBh (wh; Qh, ’LUh) - AtF;(wh) - AtCh(Hh, ¢h) V(gﬁm wh) S ijg.

skew
From the definition of operator ®, we observe that for each 1 < n < N a solution (¢, 6}') €
XZ’E of problem (5.4.1) is characterized by ® (¢}, 8;') = 0. Thus, we will prove that this operator
satisfies the hypothesis of the fixed point result [103, Chap. IV, Corollary 1.1].
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First we will prove its continuity. Indeed, by using of operator ® and Lemma 5.3.3, for all
(on, wp) € XZ,@ have

(@ (Wn, ) — (W}, 04), (fn, wr)) == Mp(Yn — Uy, dn) + vALAL (U — U, dn)
+ At(BE(Wn; ¥n, o) — By w5, on))
+ MO, — 07, wy) + KALAL (0, — 05, wp)
+ A(Blioy, (Un; On, wn) — Blioy (V1 05, wn)) + AtC™ (0 — On, é1)
< Crielltn = Vilalldnllia + vAtCa, v — Yillzallénloo
+ At(BE(Yn; n, o) — Bp(Wy; w5, on))
+ Carel|0n — Oy loellwnllon + KALC a0k — Ol 10llwsllie
+ At(Bl oy (Vn; 0n, wn) — Bl (055; 05, wn)) + Atl|g]loo.llOn — O5llogllonll1.0-

(5.4.5)

Now, we add and subtract the term B2 (17; ¢y, é5), then by using the linearity in each entry
and the continuity of the trilinear form B%(-;-,-) (cf. Lemma 5.3.3), we obtain

B (Un; ¥n, &) — Bl(Wys o, én) = Bla(tbn — Uk Un, ¢n) + BE(Uh; vn — U, én)
< Cpp([Un — Yilloollvnllag + 1WEllzallvn — Yillzo)énll20-

Following analogous steps, we get

Bshkew(wh; 9117 U)h) - ngew<w2; 27 wh) = B:kew<wh - 1/}27 9h7 wh) + B:kew(wit; eh - 927 wh)
< Cr(1Yn — VillzellOnlle + [U3l20ll0n — O;ll1.0) lwal10-

By combining (5.4.5), the above estimates, the inverse inequalities (5.4.2) and the Cauchy-
Schwarz inequality, for all (¢n,ws) € X}, it holds

(@ (n, On) — P(Yy, 03). (dny wr))| < C(L+ Aths, + Atho i) (W — by, O — ORI 1| (0n, wi)l].
Therefore, we deduce that for h and At fixed

19, 00) — (5 )l e o — 0. when (4, 04) 15 (47, 67),

i.e., ® is continuous.

On the other hand, by employing again Lemma 5.3.3 and the Young inequality, for all



106 Chapter 5. A VEM for the nonstationary Boussinesq equations

(wha Hh) € XZJ, we obtain

OéMF

N C?
(@(¢n, 1), (1, 0n)) > Qnaplltonlli o — AMF 10h e — =1l g
OéMF 2
612? At aA vAL —~
+ OéAFVAtHwthQ QijHﬂZHéQ - FTHQ/%H%Q + OéMTHeh”?),Q
F
OMT g1 aMT 2 ~ A 2
QOW 1657130 = 5164113 0 + Gar kSt 6411
T
(J PAN AtC
~ 5 ||f9 50 — —||9h||m £ (lnll3, 0.0)

1 . ~
> ~min {@MF,@MT} (1enlli o + 16x]13.0)

\V)

At ~
+ - min {Qav, an k) ([Unll3a + 10l q)

AtC C2, . Can o
(1l o + 10nl150) — S II% e - P o
O{ Qpfp
A2
A e G R
2004,V w0, 20
1 C3 C2
- At C 2 4 2 — F n—1)12
2(“"’ (v — ))(“Wz”l@"’“ h”(],Q) QOéManh ||IQ %ains
C At C’
- —II 50 — 55— ||f0 15,00
20(AF 2a

where we have used the facts that ||¢h||17g < [¥nll2.0; |

At
- min {@a,v, aark} ([9nllsg + 1627 0) = 0.

0.0 < ||0n]l1.0 and

Thus, from assumption (5.4.3), we can set

(2, 2, C3, At c2, :
=@+ At(y—Cg)) 2 | ==l T+ =167 2012 + —=2—| f
p=( (v = C)) (aMFII [ aMTII [ Ay ——If} 5.0 A || 5 5.0

and S := {(on, wn) € X}, [|[(en, wa)|| < p}. Then, we have that

<(I)(77/)h, Gh), (77/)}1, Hh)> >0 for any (@Z)h, Hh) € 0S.

Then, by employing the fixed point Theorem [103, Chap. IV, Corollary 1.1], there exists
(Yp,0y) € S, such that (¢, 67) = 0, i.e., the fully-discrete problem (5.4.1) admits at least
one solution (¢}, 0;) € S at every time step t,,. O

Remark 5.4.1. From assumption (5.4.3) it follows that if Cg <y then the condition (5.4.3) is
always satisfied. Instead, if Cg > 7, that is when the buoyancy term is strong when compared
to the diffusion terms, a “small time step condition” At < a/(Cg — ) is needed in order to
guarantee the existence of a discrete solution.
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The following result establishes that the fully-discrete scheme (5.4.1) is unconditionally
stable.

Theorem 5.4.2. Assume that £, € L*(0,T;L*(2)), fo € L?(0,T;L*(2)), g € L>(0,T;L>(Q)).
Moreover, suppose that the initial data satisfy 1o € H2(Q) and 6y € HY(Q). Then, the fully-

discrete scheme (5.4.1) is unconditionally stable and satisfy the following estimate for any
O0<m<N

m

i Oz + (A8 D N3 O ey )

n=1

< 0((&2 (£, fl?)lliz(ﬂwm)>5 + ||(¢0,90>||H2(Q)XH1(9)> _.5
n=1

1
2

where C' > 0 1is independent of h and At.

Proof. Let (¢, 07) € Wi x H? be a solution of fully-discrete problem (5.4.1). We consider the
following equivalent norms:

ol = (Mp(on, d))2, l|onlllzn == (Mf(vp, vp))* ¢n € W, Vo, € HE.  (5.4.6)

Taking v, = 07 € HJ in the second equation of (5.4.1), using Lemma 5.3.3, the Young
inequality and some identities of real numbers, we obtain

1 n n— _ n n 1’\ n
o7 ORIz, = 1657 120) + QarklOi e < CllI 50 + 58arkl6: 1 0

Then, multiplying by 2At, using the equivalence of norms and summing for n = 1,...,m,
we have that

167130+ At 10120 < C(AED 17 130 + 1651 (5.4.7)
n=1 n=1

Analogously, taking ¢, = ¥7 € W7 in the first equation of (5.4.1) and repeating the same
arguments, we obtain

s — 1~ s + Garv AtlUg]5 o < CACE0R]5 o + CALIESE o, (5.4.8)

where the constant Cg is defined in Theorem 5.4.1.
Now, summing for n = 1,...,m, inserting (5.4.7) in (5.4.8) and using the equivalence of
norms and, we get

lirli2a + At B < C (ALY (IR0 + 17 1E0) + W83 + I30),  (549)
n=1 n=1

where the constant Cy was included in the constant C' to shorten the bound.
Finally, the desired result follows adding (5.4.7) and (5.4.9). O

The following result establishes that the solution of scheme (5.4.1) is unique for small values
of At.
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Theorem 5.4.3. Let Qyy,., Oy, éBF and GBT be the constants in Lemma 5.3.3. Moreover, let
0 be the upper bound in Theorem 5.4.2, Cg be the constant defined in Theorem 5.4.1 and Clyy
be the constant in (5.4.2). Assume that

hZ 1
At < min{a@py,, @, } min e : : 5.4.10
(e S {wfnv(cBFwBT)a QCg} o

Then, for each n =1,..., N the solution of the fully-discrete scheme (5.4.1) is unique.

Proof. Let 1 <n < N and (¢3y,051), (Vhs, Orz) € W7 x Hf be two solutions of problem (5.4.1).
Then, setting wh =Y — Ups, 92 = 6}, — 0}, and using the definition of operator (5.4.4), for

all (qﬁh,vh) € Wh x H], we have that
M(UR, n) + MEOR, vn) + vALAL (R, én) + kALAL (0], v) — AtC" (07, 61)
+ At(Bﬁ(zﬁZl; 77Z);Llla Qbh) - BJ’;(@Z)Z% ¢Z27 ¢h)) (5-4-11)
+ At( bkew(d’;ﬁ% O Vp) — B:Lkew(djlrzb?; Ohas vp)) = 0.

Adding and subtracting B (y%,; ¢%, ép) and B!

skew
B} (@Z’Zh Vs Cbh) — B} (¢ZQ;¢ZQ7 Cbh) = B} (@a Uhts ¢h) + B} (%72; JZL, Cbh)
skew(whlﬂ hls Uh) B:kew (wi?% (9227 vh) skew (wh? ehl’ Uh) + Bskew (wz% 927 vh)'

(Y7y; 07, vp) we obtain

Next, taking ¢, = @ and v, = 97; in (5.4.11), from the above identities, the skew-symmetry
of trilinear forms, the continuity and coercivity properties of the multilinear forms involved (cf.
Lemma 5.3.3), it follows

A U311 0 + G 1516, + Gar v ALIYRIS o + Gar s A6}
< AtCse VRl ol ll2allvillze + ACs [¥7l2all0m 1o l03 10 + A0 loollv7 e
< At(Cr, [0 120 + Cra 105 l1.0) 167 00 ey ) + AtCill (W5, O3 sy enz(e-

Now, employing local inverse inequalities (5.4.2) in the above estimate and Theorem 5.4.2,
we get

min{ Qs Ay | (%7 )||H1(Q)xL2( Q)

[OlnvhmlnAt((CBF + OBT)Clnvhmlné) + AtC, ] || (¢Z7 97711) ||2H1(Q)><L2(Q)‘

From the assumption (5.4.10), we have that
1

min{aMF, &MF}

(Cinvhint (Cry. + Cpy ) Cighihd + C) < (5.4.12)

min

Thus, 17,; =0 and GA;;‘ = 0, which implies 93, = ¢}, and 0}, = 0},. The proof is complete. [

Remark 5.4.2. Exploiting the fact that we are in the two dimensional case and using sharper
Sobolev bounds for the convective terms (i.e., employing the Hélder inequality, Sobolev bounds
with adequate exponents and an inverse mequalzty) we could get a power h_ , for all e > 0,
instead of h,i in the term h_i § (see equation (5.4.12)).

min
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5.5 Convergence analysis

This section is devoted to the convergence analysis of the fully-discrete formulation (5.4.1)
introduced in the previous section. We start recalling some preliminary results of approximation
in the polynomial and virtual spaces. Moreover, we introduce an energy operator associated
to the H2-inner product with its corresponding approximation properties. Later on, we state
technical results, which will be useful to provide the convergence result of our fully-discrete
virtual scheme.

5.5.1 Preliminary results

First, we recall the following polynomial approximation result (see for instance [54]). Here
below E represents as usual a generic element of {€2p, },~0, which we recall satisfies assumptions
A1, A2 in Section 5.3.1.

Proposition 5.5.1. Let m € R and n € NU{0}. Then, for each ¢ € H™(K), there exist
Or € P(K), and C > 0 independent of hy, such that

16 = dellex < Chg " [@lmg, 0<m<n+1,t=0,...[m],
with [m] denoting the largest integer equal or smaller than m.

Standard arguments and (5.3.5) lead easily to following approximation properties for the
projectors IT% (an analogous result can be obtained the vectorial version).

Proposition 5.5.2. Let m € R, n € NU {0} and let 1% be the projection defined in (2.3.5).
Then, for each ¢ € H™(K), there exists a constant C, independent of K and hy, such that

6 — Ml < ChE Glmk, 0<m<n+1,t=0,...,[m]
with [m] denoting the largest integer equal or smaller than m.

Now, we continue with the following approximation for the stream-function and temperature
virtual element spaces, which can be found in [105, 38, 58] and [134, 65, 28], respectively.

Proposition 5.5.3. Let m € R. Then, for each ¢ € H™(Q), there exist ¢; € Wh and C; > 0,
independent of h, such that

||¢ - ¢I||t,Q S thm_t|¢|m,Q7 = 07 172a 2<m S k + 17 k Z 2.

For the temperature variable, we present local and global approximation properties.

Proposition 5.5.4. Let m € R. Then, for each v € H™(Q), there exist vi € H? and Cr > 0,
independent of h, such that

v —vrllex < Crhy N olmx VK € Tny v —villea < Crh™Hv|ma,

witht=0,1,1<m<(+1, £>1.
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Now, we will introduce the following discrete biharmonic projection associated with the
stream-function discretization. For each ¢ € H2(£2), we consider the operator S, : H3(Q2) — W7,
defined as the solution of problem:

A (Sup, dn) = Ar(p,dn)  Von € WY, (5.5.1)

where Ap(-,-) was defined in (5.2.5) and we recall that A%(-,-) is the global version of the
form defined in (5.3.8). By using the ellipticity and continuity of the bilinear form A%(-,-)
(cf. Lemma 5.3.3) and the Lax-Milgram Lemma, we have that the above problem (5.5.1) is
well-posed.

By using Propositions 5.3.1, 5.5.1 and 5.5.3, the following approximation result for the
energy projection Sy(+) holds true (see |3, Lemma 5.3]).

Proposition 5.5.5. For each p € H3(Q), there exists a unique function Spp € WY salisfying
(5.5.1). Moreover, if ¢ € H?>T5(Q), with % < s < k — 1, then the following approzimation
property holds:

lo = Snellia +2lle — Supllzo < Ch* " plass 0,

where C' is a positive constant, independent of h and s € (%, 1] depends on the largest re-entrant
angle of the domain Q. In particular, when Q is a convexr domain it holds § = 1.

In what follows, we will establish four technical lemmas involving the trilinear forms asso-
ciated to transport/convection and the bilinear form associated to the buoyancy term; these
results will be useful in subsection 5.5.2.

Lemma 5.5.1. For all (,;pn, ¢n, € WP, there exists 6BF > 0, independent of h, such that

~ 1 1
| Bi(Cus on dn)| < Crye Ghllzellonllzellonll allonllf o-

Proof. We use the definition of the trilinear form BA(+;-,-) (cf. (5.3.9)), the Holder inequality,
the continuity of the operators H’;;z and H’}}‘l with respect to the L2 and L*-norms, respectively
(cf. properties (5.3.5)), and the Holder inequality for sequences, to obtain

Bi(Grion dn) < D IR Ao,k [T curl o | [T Vil
KeT,

< Cl|AGulo.allcurl pl[La@) |V onllL@)
< CllAGloallenll2ell VénllLaw,

where we have used the Sobolev inclusion H!(Q) — L4(Q). Now, applying the Ladyzhenskaya
inequality (5.2.14) with v = V¢, we obtain the desired result. O

Lemma 5.5.2. For all ,¢,¢ € H2(Q)), we have that

Bi(g;0,0) — B¢ ¢, 0) = Br(pip — C+ ¢, 0) + Bib(o — ¢+ ¢;¢, ) — Bu(6;¢, 9).

Proof. The proof follows by adding and subtracting suitable terms, and using the trilineality
and skew-symmetry properties of the form B%(-; -, ). a

Next lemmas give us the measure of the variational crime in the discretization of the trilinear
forms Brp(+;-,-) and Bggew(-; -, -) and the bilinear form C(-,-).
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Lemma 5.5.3. Let p(t) € HY(Q) NH2(Q), with 3 < s < k—1, for almost all t € (0,T).
Then, there exists C' > 0, independent of mesh size h, such that

|Br(¢; ¢ 0n) — B(wy 9, 8n)l < CB* ([ @lhsse + [0llze) [@llz+solldnllze Von € Wi
Proof. The proof has been established in [3, Lemma 5.4]. O

Lemma 5.5.4. Let 3 < v < min{k — 1,0}. Assume that o(t) € H(Q) NH*"(Q) and v(t) €
H{(Q) NH™(Q), for almost all t € (0,T). Then, there exists C > 0, independent of mesh size
h, such that, a.e. t € (0,T),

| Bakew (930, wn) = Bliew (030, 0n)| < CW @l isnallvlliiellwnlie Vwn € Hy.  (5.5.2)

Moreover, assume that g(t) € HY(Q2) N L>(R2), for almost all t € (0,T). Then, a.e. t € (0,T),

C v, ¢n) — C"(v,0n)| < ChY max{||gll-.0, gll<a}lvlitraldnle Yén € Wi (5.5.3)

Proof. To prove estimate (5.5.2), we split the consistency error as

Bikew (50, wn) — Bliey, (5 0,0p) = % (81 (wp) + Ba(wy)), (5.5.4)
where

Bulwn) = Y (BE(giv,un) = B (giv,un) )
KeTy

Balwn) = Y (BE(prwn,v) = BE (giwn,0)

KeTy

In what follows, we will establish bounds for the terms (;(wy,) and [y(wy,). Indeed, for the
term [ (wy) we have

B1(wp) = Z /K(curl ¢ - Vo)wy, — /K(H';lcurl @ - I Vo) Tty

KeTy

= Z /K(curlcp-Vv)(wh—Hﬁglwh) + Z /K (curl ¢ - (Vv — I 'Vo)) T wy,

KeTy, KeTy, (555)
+ Z / ((curl p — 5 eurl o) - Iy ' Vo) T
KeT, K
=T+ 1T, +Ts.

In order to bound the terms T}, first we consider the case 1/2 < v < 1. Then, by using
approximation property of Hﬁ; I and the Holder inequality, it follows

Ty < ) leurl @l o) Vol llwn — T wnllo
KeT,

S C Z ||Curl90HL4(K)||VUHL4(K)hK’wh|1,K
KeTy,

< Chllhyellollieallwallo-
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On the other hand, for the case 1 < v < ¢, we use orthogonality property of Hé{_l, the
Holder inequality (for sequences), to obtain

T, = Z/ (curl ¢ - Vo — I (curl ¢ - Vo)) (wy, — i wy,).
KeTh

Now, we apply [26, Theorem 7.4|, with s =y — 1, s; = s = v and p = p; = p2 = 2 to obtain
curl o - Vo € H71(Q) and |curl ¢ - Vul,_1.0 < Cll¢ll11+.0]lv][144.0-
Thus, by using Proposition 5.5.2 and the above facts, we arrive

Ty < ChHeurl o - Vol yohllwillie < CR7[[@lliellvlhie.ellwlle.
Collecting the above inequalities, for % < v </, we have
Ty < R lelyellvlliv llwnlle. (5.5.6)

Now, for the term Ty we proceed as follows. First, we apply the Holder inequality, then
by using stability and approximation properties of the L?-projectors (cf. properties (5.3.5) and
Proposition 5.5.2), Sobolev embedding and the Holder inequality for sequences, we get

T < ) lleurl gf|ua | Vo — TH Vo [T wn s
= (5.5.7)
< Chl@l1yellvllisyellwalle:

For the term T3, we follow similar arguments, to obtain

T3 < O lelhyellvlhy.ellwallo- (5.5.8)
From the bounds (5.5.5), (5.5.6), (5.5.7) and (5.5.8), we conclude that
Bi(wn) < CR||@ll147.0llv]l145.0llwall10. (5.5.9)

Now, we will focus on the term (S5(wy,). To estimate this term, first we add and subtract suitable
expressions to obtain

Ba(wp,) Z/ (curl ¢ - th)v—/(l_[’;{ Leurl o - T4 V)T o

KeTy,

Z / (curl ) - (Vwy, — I Vawy,)

KeTy,

+ Z / curl p — H 'curl <p) -UH%’leh
KeTy

+ Z/ (IT¥  curl ¢ - I 'V, (v — I o)

KeT,
=L+ L+ 1.

Applying orthogonality and approximation properties of Hﬁ(_ ! we have

Z / (curl ) — I (v(curl ) - (Vwy, — T ' Vawy,)

KeTy,

<C Y Wglo(eurl )l < Chlo(eurl )], allwi.0.
KeTy
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Then, applying again [26, Theorem 7.4], now with s =, s =7+ 1, s =~y and p =p; =
P2 = 2, we get

lv(curl )]0 < Cllv]i4y.allellitro

From the two bounds above, we obtain

L < CRYlelliallvlhiellwnlo.

The terms I, and I3 can be estimated using similar arguments. We conclude that

Bo(wn) < Ch[[ollarvyallvllivy.ellwnlo- (5.5.10)

The proof of (5.5.2) follows from (5.5.4), (5.5.9) and (5.5.10).

Next, we will prove property (5.5.3). Let ¢, € W7, then adding and subtracting the term
gu - H’;{_lcurl ¢n and by using orthogonality, stability and approximations properties of the
L2-projections, we have

C(v, o) — C"(v, ¢p) = Z / (gv — M5 (gv)) - (curl ¢), — TT% tcurl ¢y,)

KeT, K
+ / g(v — i) - T eurl ¢,
K

<O ) (hilgvlxlleurl gullox + hillglio vl xlleurl uflox)
KeT,,

< CR(llgllyellvllielénllie + hkligllsllvllyallénle),
where we have used analogous step to those used to bound ;. The proof is complete. O

We finish this subsection recalling a discrete Gronwall inequality, which will be useful to
derive the error estimate of the fully-discrete virtual scheme (5.4.1).

Lemma 5.5.5. Let D > 0, aj, b;, ¢; and \; be non negative numbers for any integer j > 0,
such that

an—f-Atzn:bjSAtzn:)\j(lj‘l—Atzn:Cj—f—D, TZZO

J=0 J=0 J=0

Suppose that At\; <1 for all j, and set o; := (1 — At)\;)~'. Then, the following bound holds
a, + Athj < exp (Atz aj)\j> (Atz cj + D)'
Jj=0 j=0 =0

5.5.2 Error estimates for the fully-discrete scheme

In this subsection we will provide a convergence result for the fully-discrete problem (5.4.1)
under suitable regularity conditions for the exact solution.

We start denoting (¢(t,),0(t,)) as (", 6™) at each time level ¢,,, and splitting the stream-
function error as follows:

Y= = (" = Spd") = (Y — Sp") =1y — @l
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For the temperature variable we will exploit the virtual interpolant presented in Proposi-
tion 5.5.4, to split the error as:

0" — Oy = (0" —0F) — (O — 07) = ng — %5,

where 07 is the interpolant of 0" in the virtual space H?.

Error estimates for the terms 7y and n;; are given by Propositions 5.5.4 and 5.5.5, respec-
tively. Therefore, we will focus on the terms ¢y, and ¢y.

We start establishing error equations of the momentum and energy identities. Indeed,
by using the fully-discrete scheme (5.4.1), the continuous weak formulation (5.2.13) and the
biharmonic energy projection Sy, defined in (5.5.1), we have the following error equation for the
momentum identity (where we have taken ¢, = ¢}, € W})

n n—1
()0 — ()0 n n n n n
MII; (%7 ‘P¢) + VA}}(S%a ‘P¢) = <F£(S%) - Fw(%))

+ (B ) — BRI 01 ¢3)

Sy — Syt (5.5.11)
n o ny h n
+ (MF(atw 79011;) MF( Al 7‘P¢)
=: TF+TB+TM+TC.

Analogously, recalling that ¢y = 0} —07, and using the definition of the continuous and discrete
problems (cf. (5.2.13) and (5.4.1), respectively) for the energy equation, we have that

i (B o) + nabet o) = (R - i)
< skew ¢ 0 y Po ) skew(wh?9h7¢9)> (5512)
n h 0? _ 9?_1 n noon h/ign , n
r(@8",05) = Mi(L— o) ) + 1 (Ar(8", 05) — 4567 27)
= Ip+Ip+ I+ 14

The next step is to establish error estimates for the momentum and energy equations (5.5.11)
and (5.5.12). The following two lemmas provide such bounds and will be useful to obtain the
convergence result for the fully-discrete problem (5.4.1).

Lemma 5.5.6 (Error estimate for the momentum equation). Suppose that the external forces
satisfy £, € L>(0,T; H*(Q)) and g € L>=(0, T; H™srHQ) N L>2(Q)), with % <s<k-—1and
1 <r <L Let (4", 0") € HA(Q) x HY(Q) be the solution of problem (5.2.13) at time t = t,,.
Moreover, assume that

¥ € L0, T; HF(Q)), a9 € L0, T H(Q)),
Oy € LY0, T; HY(Q)), 6 € L0, T;H"(Q)).
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Let (47, 0m) € Wh x HY be the virtual element solution generated by scheme (5.4.1). Then, the
following error estimate holds

1 n n— @A
(el — 1) + 24

<C1+v (Ingllag + ||1/)"||2,Q)] [l 111,

+C (W 5.0 + Impl5.0)] 131150 + 1" 15a 5150 + ¢ 16.0)
+ Ch* (waH%w (tn—1,tnsH5(T3)) T v Y 3 e0)

+ CP2™™M T max{||g" | 2ings .00 187 120} 10" 20

||S%||2Q

(5.5.13)

n C S n
+ OOl s i 115 11 mn + RO e (6 st 1 e

Proof. We will estimate each terms in (5.5.11). Indeed, by using the definition of the functionals
Fy(-) and F}(-), the Cauchy-Schwarz and Young inequalities for the term Ty holds

C .
Tr < S b I i, ey + 195 - (5.5.14)

For the term Ty, we proceed similarly as in [3, Theorem 5.6] to obtain

n o__ n—1 n _ ,,n—1
TM _ MF(at@ZJn (pw) Mh (Shw Shw 790:;) _ MF (at¢n _ u7¢3)

At At
K (V= (IR =),
B () )
on (((TRW" —m )\ Sun - Sunt -
e ((B) )

n C S n
< Cllowd s s wir@p 5 e + G PNOW Nt s = [ €3 1.0
Next, to estimate T, we add and subtract the term Ch(6, ©) to get

To := CMO, o) — C(0", ) = C™ (05 — 07, ) + (C™(0™, ) — C (0", ¢}))
= (C"(gp,¥}) — C™(ng, ) + (CM(0", @) — C(6", 01))
< 1" loo,2 (l2p o2 + 175 ll0.2) [l€p]l1.0
+ Ch™™ 7 max{||g" | mings.r.0s 118" oo HIO™ el 1.0
< Clig"l% alllesliza + el o)
+ Cthm{”} max{[|g" | Zings.ry.00 18" 12 o IO 170 + clloflli g,

(5.5.16)

where we have used the Holder inequality, bound (5.5.3) (with v = min{s,r}) and the Young
inequality.
For the term Tz, we have

Ty = BF(WZ;WZM%) BF(¢h:¢h79%) (BF(¢ ;" S%) B’}(W;WWZ))

+ (B 0", op) — BE(Ws n, @) = Tpr + Tha.
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Now, we will bound the terms Tz, and Tgs. Indeed, from Lemma 5.5.3 and the Young inequality
we have that

Tp1 == Bp(y"; 9", ) — BE(W"™ 4", ¢l))
< CR (19" lags + 19072, Q)!|¢”||2+s,ﬂ||<ﬁZ||2,ﬂ
4C,

< = h28||¢n||2+sa +—

aAFu

aAF (5.5.18)

_ OéA
< Cor B |2 a0 + 0212 o,

where we have included the term (||¢"||a4s.0 + ||#"|2.0) in the constant Cy, in order to shorten
the inequality.

On the other hand, to bound the expression T2, we apply Lemma 5.5.2, recall that o), =
Y — Spyp™ and ny = Y™ — SpY", to arrive

Tpy = BE(W™ 0", @}) — BR(yr v, ¢1)
= Bp(@" 0" —h + ¢, ) + BR(" — ¥+ @ vn, ) — Brlehivn o) (5.5.19)
= BEW™ i, 08) + Bl vn, o) — BE(oh v, o).

By using Lemma 5.3.3, together with the Young inequality, we have

QAF

BE(W™n,0p) < —2=|leillsa + Cv "3,

Now, adding and subtracting suitable terms, and employing Lemma 5.3.3 along with the
Young inequality, we obtain

Bi(nyvn, ) = B 0" + (Ui —4™), )
= BL(n: ", @) + Bl o — g, o)
= Bh(ni; ", ) — Bi(n; nZZ,, )
< Ch, (V"2 + 10l 2.02)
a - n
< ||%||m+CV Yl 50 + ||77¢||29)||77¢||2Q

Once again adding and subtracting adequate terms, using Lemma 5.5.1 and the Young
inequality, we get

— B, ) = Bl (0" — p) — ™, 0n) = Bi(en;ni, o) — BR(ehv", o)

1 1
o (Ingllz0 + ¥ 20) l€hll5ll o7 o

aA n n n n

< 2ar? H%Her?CV (lmgllz0 + 10" 13.0) ledllzalleyle
CYA n n 2 n CYA

hS Az | ¢||29+2V ! (||7]¢||§Q+||¢ H%Q) ||901/;||%Q Az ||9%||29
aA n

< 2% Pl +4Cw ™ ( + 14 50)
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Combining the estimates (5.5.17)-(5.5.19) and the three previous inequalities, we have

_ O-/A
Tp < Co B[ 34,0l 30 + 22 o2 + Cv 10" B allng 12

(5.5.20)
+Ov ([l 50 + HnZH%,Q)Hsz,Q +C ™ ([Ingllan + 19" 120) 19517 0.

Now, from estimates (5.5.11), (5.5.14)-(5.5.16) and (5.5.20), the definition and equivalence
of the norm |||-]||rs (cf. (5.4.6)), together with the coercivity of bilinear form A%(-,-) we obtain
the desired estimate.

]

Lemma 5.5.7 (Error estimate for the energy equation). Let % <s<k—-1landl <r<H/.
Suppose that fo € L>°(0,T;H"(Q)). Moreover, let (¢",0") € H3(Q) x H(Q) be the solution of
problem (5.2.13) at time t = t,, and assume that

0 € L0, T; HY/(Q) N WL (), 96 € L'(0, T; H'(Q)),
Ouf € L0, T;L%(Q)) and < € L>(0,T; H*™(Q)).

Let (7, 0m) € Wh x H} be the virtual element solution generated by scheme (5.4.1). Then, the
following error estimate holds

1 OéA _ n
iz (Neslzn = [le5™ 170) + —5— A2 gh 0 < Clleslla + 7 10" allnsl3e

+C [ ([ 20 + H%Hm)] 5115 o + Clllp 117,

T - min{s,r n n (5521)
+ CR" || follZoe ey nstr(riyy + Cr B2 m 12, 0110711340

n C T n
+ OOl s nnzn 125 llzn + 75 100 Lt st |05 2

Proof. We will establish estimates for each terms in the error equation (5.5.12). We start with
the term I, which is bounded by using the Cauchy-Schwarz inequality and approximation
properties of projection I1%, as follows:

C ., Cy o
Ip = Fél(%) Fy(pp) < h2 ||f9||Lo<> tn—1,tn;HT(TH)) +§||906||(2),Q‘ (5.5.22)

For the term I,;, we proceed similarly as in [153, Theorem 3.3| to obtain

op — 05!

n C T n
< CllOublr b itz 196 logo + Eh 100111 (11 i1 (2 |95 Nl 002
Analogously, as in (5.5.17) we split the term I as follows:

Ip = Bskew<wn; en’ 903) skew(¢h7 927 gpll)) (Bskew<wn; 9”7 903) Skew<¢n 6n7 o )>

+ ( skew(d)n en’ 906) ;Lkew<¢2;927 903)) = IBl + ]BQ'
(5.5.24)



118 Chapter 5. A VEM for the nonstationary Boussinesq equations

Now, applying the bound (5.5.2), with v = min{s,r} and using the Young inequality, we
obtain

IBl = BSkeW(wn; en’gog) skew(w enaSpe)

1 2mi aA
<Ck 1hgm‘“{”}||1/)"||§+s,9||9"||{‘1)+m+ — =l .

illo
(5.5.25)
On the other hand, similarly as in (5.5.19) and (5.5.20), we can derive
Iz = Bieew (V315 05) + Bliow (15303, 05) — Bl (0 032 05)
OéA n OéA
< = ||909||1Q +Cr7HlY ||2 allmg It + =70 ||909||1Q (5.5.26)

+Cﬁ’1(\l9”Hm+ I 113 Q)Hw\lm - Skew(% s ©6)-

However, since the discrete trilinear form B2 __(-;-,-) does not satisfy an analogous property
to Lemma 5.5.1, we will bound the last term in (5.5.26) by a different way. Indeed, adding and
subtracting adequate terms, using the definition of trilinear form, the Hoélder inequality and

employing the continuity of the L?-projections involved (cf. (5.3.5)), we obtain
ngew<90$; ;117 (pg) = Bskew(@q/ﬂ 779 ) 909) + Bskew<901/)7 0" ) wg)

= 5 (B%((p11}177737903) - BT(<1OZJ 9037773)) + Bskew((pz; _‘9”7903)

<C Y T Vg e o leurl 0 [lo,c 15 o, (5.5.27)
KeTy
+COY I g e o leurl @ 1o i 1V h o + Bliew (0 —0", 23).
KeTy,
Now, applying an inverse inequality for polynomials, the continuity of H ! and Proposi-

tion 5.5.4, for r > 1 we get
T Vg e (i) < ChMIT Vg llo.e < Chig g lnx < ClO™ J1sn i < Creg.
Analogously, we have that
I 75 oo (1) < ClO™ 1410 < Creg.

Next, under assumption 6" € W!_(Q), the definition of the form B

skew( ' ) and the Cauchy-
Schwarz inequality, we get

n
lo,02-

Bl (0l —0", 05) < Cul|0" lw @ Il [1.ellellon < C

Inserting the above estimates in (5.5.27), and applying the Cauchy-Schwarz and Young
inequalities, it follows

— Bl (93307, 65) < 3Ceagllllln0llh e < Chllel 2 + 42 10 %6 lia: (5.5.28)
Then, combining the estimates (5.5.24), (5.5.25), (5.5.26) and (5.5.28), we obtain

Ip < Cﬁfthmin{s’r}‘WnH%Jrsﬂ”enH%Jrr,ﬂ + 0“71|WnH§,QH773H%,Q

404AT (5.5.29)

+ O 10" o + g 1T ) lInillz0 + — = llehllia + Cx " + DIl o
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Now, for the term 4, we add and subtract 7 € Py(K') such that Proposition 5.5.1 holds
true, then applying the consistency property of A%K(-, -), the triangle inequality and Proposi-
tion 5.5.4, we have that

= > (AFO" —0n, o)+ ARS (00 — 07, 0})
Ko < ) (5.5.30)

< Crh"|0"[[14rallwpllie

aA K
< CR 073 1 + 1—6‘@3“%9

Now, from bounds (5.5.12), (5.5.22), (5.5.23), (5.5.29) and (5.5.30), the definition and equiv-
alence of the norms ||| - |||z (cf. (5.4.6)) and || - [|o.q, together with the coercivity of bilinear

form A%(-,-), we obtain the estimate (5.5.21).
[

The following result establishes an error estimate for the fully-discrete virtual scheme (5.4.1).

Theorem 5.5.1. Suppose that the external forces satisfy £, € L>°(0,T;H*(Q2)), fo € L>°(0,7;H"(Q))
and g € L>(0, T; H™™M=H(Q) N L>*(Q)), with 3 < s <k—1and 1 <r < (. Let (¥",0") €
HZ(Q) x H}(Q) be the solution of problem (5.2.13) at time t = t,,. Moreover, assume that

¢ e L0, T; H**(Q)), 0 € L'(0,T;H'*(Q)),  duep € L'(0,T; H'(Q)),
0 € L0, T; H*"(Q) NnWL(Q), 90¢cL'Y0,T;H(Q),  9ubcL'(0,T;L*Q)).

Let (47, 0m) € Wh x HY be the virtual element solution generated by scheme (5.4.1). Then, the
following estimate holds

1™ = 0" = Gl ey rzgey + A Y NW = 63,67 = 6)) ey () < O™+ AP),
j=1

where the constant C' is positive and depends on the physical parameters v, k, final time T, mesh
reqularity parameter, the reqularity of the Boussinesq solution fields (1, 0) and the external forces
fy, fo. 8, but is independent of mesh size h and time steps At.

Proof. The desired estimate will follow combining Lemmas 5.5.6 and 5.5.7 with the discrete
Gronwall inequality. Indeed, we proceed to multiply by 2At the estimates (5.5.13) and (5.5.21),
then by employing the Young inequality to the resulting bounds and iterating 7 = 0,...,n, we
have
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1103l + 125 17n + A8 D llehlza+AtY  legllia

j=0 j=0
< OALS 1407 (Il e + 10 110) ] Neh s + CAES” [1+ g7 1% 0] 12
j=0 j=0
+OALS. [ (I 3 + I 130) + 5 16712 0] I 13
§=0
+ ALY [ (1 3 + I 3.0) + 187 1% s] 112
j=0

+ CAth* <||fTZJ||%°°(O,tn;HS(7’h)) 0117 10, 4s111-02 () + V_l||¢||ioo(o,tn;H2+s(Q))>
+ Atp?min{sry maX{Hg||iOO(0,tn;Hmin{5»T}(Q))7 ||g||i°°(0,tn;L°°(Q))}||'9||i°°(0,tn;H7"(Q))
+ OOt (I foloqo sty + 1O s 01y )

+ C Atk 2 minterd <||¢||ioo(o,tn;H2+s(Q)) + ||9||ioo(o,tn;H1+r(Q))>

+ CAt? <|!3tt9||il(o,tn;L2(Q)) + ||att¢”il(o,tn;Hl(Q))> + aupllegllt o + @ lloglls o

Thus, applying the discrete Gronwall inequality (cf. Lemma 5.5.5), choosing (9, 09) = (1;(0), 07(0))
and using Propositions 5.5.3 and 5.5.4 along with the equivalence of norms, we have

(leglia + 195 150) + At Y (lehllia + lllia) < CH™E + As),
j=1

with % <s<k—-—1,1<r </fand C >0 is independent of mesh size h and time step At.
Finally, the desired result follows from the above estimate, triangular inequality, together
with Propositions 5.5.4 and 5.5.5. O

Remark 5.5.1. In the present framework, the main advantage of using an energy projector
Sp™, as we do for the stream-function space, is to obtain a shorter proof. Nevertheless, for the
temperature variable we do not use an energy projector, but resort to a standard interpolant 07 .
The reason is that we need also some local approximation properties for the temperature field
that the energy projection operator, being global in nature, would not have.

5.6 Numerical results

In this section we carry out numerical experiments in order to support our analytical results
and illustrate the performance of the proposed fully-discrete virtual scheme (5.4.1) for the
Boussinesq system. In all examples, we use the lowest order virtual element spaces W% and H”,
for the stream-function and temperature fields, respectively. At each discrete time, the nonlinear
fully-discrete system (5.4.1) is linearized by using the Newton method. For the first time step,
we take as initial guess (¥i® 6i*) = (0,0), and for all n > 1 we take (¥i®, 0ir) = (71 0771,
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The iterations are finalized when the /*°-norm of the global incremental discrete solution drop
below a fixed tolerance of Tol = 1078,

The domain € is partitioned using the following sequences of polygonal meshes (an example
for each family is shown in Figure 5.1):

e 7,!: Distorted quadrilaterals meshes; e 72: Voronoi meshes;

e 7% Distorted concave rhombic quadri-
e 77 Triangular meshes; laterals.

(a) mesh T;! (b) mesh 7,2 (c) mesh 7;2 (d) mesh 7;
Figure 5.1: Domain discretized with different meshes.
In order to test the convergence properties of the proposed VEM, we measure some errors

as the difference between the exact solutions (1, 0) and adequate projections of the numerical
solution (¢}, 07). More precisely, we consider the following quantities:

N 1/2
B, L2 1) 1= (DY [t — T2013,)
" (5.6.1)
1/2
B0, L2 HY) 1= (ALY [6(t) = TI70;12,)
n=1
for the temperature we have
B0, L, 1Y) = () — 20, 502

E(0,L>,L%) = [|0(T) — 17107 [lo.0-

Accordingly to Theorem 5.5.1, the expected convergence rate for the sum of the above norms
is O(h + At).

5.6.1 Accuracy assessment

In our first example, we illustrate the accuracy in space and time of the proposed VEM (5.4.1),
considering a manufactured exact solution on the square domain  := (0, 1)?, the time interval
[0, 1] and force per unit mass g = (0, —1)”. We solve the Boussinesq system (5.2.1), taking the
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load terms f;, and fy, boundary and initial conditions in such a way that the analytical solution
is given by:

agt) — (Y 2 (D ) 221022y — 62 + 4y
Y, ) = us(z,y, 1) = —(elo(t*l)—e*m)y2(1—y)2(2x—6x2+4x3) )

p(z,y,t) = (ew(t_l) — e 1) (sin(z) cos(y) + (cos(1) — 1) sin(1)),
G,y t) = (€D — e (1 —2)P(1—y)*  and O,y 1) = wi(z,y,1) + us(w,y, 1).

In order to see the linear trend of the stream-function and temperature errors (5.6.1),
predicted by Theorem 5.5.1, we refine simultaneously in space and time. More precisely, for
each mesh family we consider the mesh refinements with h = 1/4,1/8,1/16,1/32, and we use
the same uniform refinements for the time variable. In particular, for the mesh 7;!, it can be
seen along the diagonal of Table 5.1, the expected first order convergence for the stream-function
and temperature errors (5.6.1).

In Figure 5.2, we display the errors (5.6.1) for the same simultaneous time and space re-
finements (h = At = 277, with ¢ = 2,...,5), using the four mesh families. We notice that the
rates of convergence predicted in Theorem 5.5.1 are attained by both unknowns.

E(y, L% H?)

dofs N 1/4 1/8 1/16 1/32 1/64

36 1/4 [1.88912e-2] 1.42183e-2 1.16131e-2 1.02912e-2 |9.63665¢-3
196  1/8  1.11333e-2 6.91546e-3  6.15400e-3 |5.77765¢-3
900  1/16 4.92223e-3  3.53363¢-3 2.54826¢-3
3844 1/32 3.61175e-3  2.11884e-3  1.46063e-3 [1.21158e-3| [1.11670e-3 ]
15876 1/64 [3.21002e-3] |1.64565¢-3| [9.22443¢-4| 6.49802¢-4 |5.59824e-4

E(6, L% H')
36 1/4 |1.74892e-2| 1.34200e-2 1.11391e-2  9.96756e-3 |9.38232¢-3
196 1/8 1.02277e-2 |7.88174e-3| 6.66404e-3  6.05736e-3 |5.75702e-3

900 1/16 5.32067e-3  3.65373e-3 |2.93777e-3| 2.64415e-3 |2.51594e-3

3844 1/32 3.80377e-3 2.18463e-3  1.49484e-3 |1.24874e-3]| [1.16084e-3
15876 1/64 |3.37157e-3| [1.71644e-3] 9.52229¢-4| 6.64250e-4 |5.69713¢-4

Table 5.1: Accuracy assessment. Errors (5.6.1) using the VEM (5.4.1), with polynomial degrees
(k,€) = (2,1), physical parameters v = k = 1 and the mesh family mesh 7!

In order to study the trend of the stream-function and temperature errors (5.6.2), we show
in Table 5.2 the results considering again the mesh 7', with h = At = 27% with i = 2,...,5.
In particular, we can observe that the rate of convergence in the mesh size h seems higher than
one; this is not fully surprising, since standard interpolation estimates (in space) for the norms
in (5.6.2) indicate that, potentially, the discrete space could approximate the exact solution
with order O(h?). In order to better investigate this aspect, in Figure 5.3 we display the
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E(y, L2, H?)

(a) Stream-function errors

E(0, L%, HY)

10

h

(b) Temperature errors

Figure 5.2: Accuracy assessment. Errors (5.6.1) for simultaneous space and time refinements,
using the VEM (5.4.1) with polynomial degrees (k,¢) = (2
and the mesh families 7,", i =1,...,4.

, 1), physical parameters v = k = 1

errors (5.6.2) for space and time refinements given by h = 27" and At = 47, with i =2,...,5,
respectively, using the four mesh families. We notice that the rates of convergence seem indeed
quadratic with respect to h.

E(y, L HY)
At
dofs 1/4 1/8 1/16 1/32 1/64
36 1/4  4.30301e-3 4.50090e-3  4.65255e-3  4.74590e-3  4.79749e-3
196 1/8  2.03865e-3 2.20110e-3 2.41662e-3  2.46443e-3
900  1/16 2.38767e-4 2.11074e-4  3.61809e-4  4.80109e-4
3844  1/32 7.26027e-4 4.35284e-4  2.05347e-4  6.71747e-5  4.99331e-5
15876 1/64 8.16241le-4 5.20174e-4  2.84604e-4  1.34953e-4  5.10645e-5
E(0,L>°;12)
36 1/4  3.44760e-3 3.94792¢-3  4.28939¢-3  4.48462¢-3  4.58811e-3
196 1/8  9.85211e-4 1.44875e-3 2.06308¢-3  2.19159¢-3
900  1/16 5.96219e-4 2.98014e-4  3.26274e-4  4.64998c-4
3844 1/32 8.26668e-4 4.90632e-4  2.31786e-4  9.52686e-5  9.44396e-5
15876 1/64 8.90387e-4 5.68492¢-4  3.13988e-4  1.53393e-4  6.48063e-5

Table 5.2: Accuracy assessment. Errors (5.6.2) using the VEM (5.4.1), with polynomial degrees

(k,0) = (2

, 1), the physical parameters v = k = 1 and the mesh family 7;'.
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h h

(a) Stream-function errors (b) Temperature errors

Figure 5.3: Accuracy assessment. Errors (5.6.2), using the VEM (5.4.1) with polynomial degrees
(k,f) = (2,1), the physical parameters v = k = 1 and the mesh families 7/, i = 1,...,4.

5.6.2 Performance of the VEM for small viscosity

In this test we consider the square domain € := (0, 1)?, the time interval [0, 1] and force per
unit mass g = (0, —1)7. We solve the Boussinesq system (5.2.1), taking the load terms £, and
fo, boundary and initial conditions in such a way that the analytical solution is given by:

o,y ) = (ul(x,y,t)> _ (—cos(t) sin(mz) Sin(ﬁy)) |

ug(z,y,1t) — cos(t) cos(mx) cos(my)
p(x,y,t) = cos(t)(sin(mx) + cos(my) — 2/m),

1
1[)(%, Y, t) - — COS(t) sin(wx) COS(?Ty) and 9(1’, Y, t) = U (ZE, Y, t) + Uz (ZE, Y, t)
™

The purpose of this experiment is to investigate the performance of the VEM (5.4.1) for
small viscosity parameters. In Figure 5.4, we post the errors (5.6.1) of the stream-function
variable obtained with the mesh sizes h = 1/4,1/8,1/16 of T;2, considering different values of v
and fixing the time step At as 1/8 and 1/16 (see Figure 5.4(a) and Figure 5.4(b), respectively).
It can be observed that the solutions of our VEM are accurate even for small values of v. Larger
stream-function errors appear for very small viscosity values.

We observe that this results are in accordance with the general observation that exactly
divergence-free Galerkin methods are more robust with respect to small diffusion parameters,
see for instance [147] (and also [35] in the VEM context). On the other hand, note that the
scheme proposed here has no explicit stabilization of the convection term since this is not the
focus of the present work (for instance, the natural norm associated to the stability of the
discrete problem does not guarantee a robust control on the convection).
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Figure 5.4: Small viscosity test. Errors (5.6.1) of the VEM (5.4.1), for different values of v and
k = 1, using the meshes 7,2, polynomial degrees (k,¢) = (2, 1).

5.6.3 Natural convection in a cavity with the left wall heating

In this last example we consider the 2D natural convection benchmark problem, describing
the behaviour of a incompressible flow in a squared cavity, which is heated at the left wall (see
[161, 155, 128, 125, 158|). In particular, we consider the unitary square domain Q = (0,1)%
The boundary conditions are given as follows: the temperature in the left and right walls are
0, = 1 and 0 = 0, respectively, while in the horizontal walls is 0,6 = 0 (i.e., insulated, there is
no heat transfer through these walls), no-slip boundary conditions are imposed for the fluid flow
at all walls. In terms of the stream-function these conditions are given by: v = 0,9 = 9,4 =0
on I' x (0,7), as shown in Figure 5.5. The initial conditions are chosen as 1) = —z + y and
6o = 1 (so that the initial data does not satisfy the boundary conditions).

We consider the forces f;, = 0, fy = 0 and g = PrRa(0,1)”, where Pr and Ra denote the
Prandtl and Rayleigh numbers, respectively. For the numerical experiment, we set the physical
parameters as: v = Pr = 0.71, Ra € [10%,10°] and x = 1.

In order to compare our results with the existing bibliographic, we decompose the domain
Q) using mesh 7;° conformed by uniform squares (see Figure 5.5(b)). Moreover, the time step
is At = 1072 and final time T = 1.

Streamlines and isotherms of the discrete solution obtained with our VEM (5.4.1) are posted
in Figure 5.6, using Ra = 103,104,105, 105 and mesh size h = 1/64. The results show well
agreement with the results presented in the benchmark solutions in [161, 155, 128, 125, 158].

Tables 5.3 and 5.4 present a quantitative comparison between our results and those obtained
by the benchmark solutions in the above papers. Table 5.3 shows the maximum vertical velocity
at y = 0.5, for Ra = 10*,10° and 10°, while Table 5.4 shows the maximum horizontal velocity
at x = 0.5, using the same values of the Rayleigh number. Here the numbers in the parenthesis
denotes the numbers of elements along each edge of the domain, and is therefore an indication
on the mesh finesse. We can observe that the results show good agreement, even for higher
Rayleigh numbers.

Finally, for the natural convection problem we investigate the heat transfer coefficient along
the vertical walls of the cavity in terms of the local Nusselt number (Nuj,eq), which is defined
by: Nwpear(x,y) := —0n0(x,y). Figure 5.7 describes the variation of local Nusselt number at
hot wall and cold wall, for different values of the Rayleigh number. It can be seen that the
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(a) Boundary conditions (b) mesh 7,° with h =1/8

Figure 5.5: Natural convection cavity. Boundary conditions and domain discretized with mesh
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Figure 5.6: Natural convection cavity: streamlines (top panels) and isotherms (bottom panels),
for Ra = 103,10%, 10° and 10°, respectively (from left to right), using the mesh 7;° (h = 1/64).

results show good agreement with the results presented in [161, 155, 128, 125, 158].
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Ra

VEM Ref [161]  Ref [15

Ref [128]  Ref [1

Ref [158]

10%
10°
109

5
19.56(64)  19.63(64) 19.51(41
68.46(64)  68.48(64)  68.22(81
216.37(64) 220.46(64) 216.75(81)

I 25]
) 19.63(71) 19.90(71)
) 68.85(71) 70.00(71) 70.63(101)
221.6(71) 228.0(71)

19.79(101)

227.11(101)

Table 5.3: Natural convection cavity. Comparison of maximum vertical velocity uyy, := 11} 9,0
at y = 0.5 with the VEM (5.4.1) and mesh 7,> (h = 1/64).

Ra VEM Ref [161]

Ref [155]

Ref [125]  Ref [158]

10* 16.15(64) 16.19(64)
10°  34.80(64) 34.74(64)
105 65.91(64) 64.81(64)

16.18(41)
34.81(81)
65.33(81)

16.10(71) 16.10(101)
34.0(71)  34.00(101)
65.40(71)  65.40(101)

Table 5.4: Natural convection cavity. Comparison of maximum horizontal velocity wug, =
—10} 0,1 at x = 0.5 with the VEM (5.4.1) and mesh 7,;> (h = 1/64).
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(b) Nusselt in the cold wall

Figure 5.7: Natural convection cavity. Nusselt number along the hot wall (left) and the cold
wall (right) for varying Rayleigh numbers, using the VEM (5.4.1) and mesh 7;?, with h = 1/64.



Chapter 6

The Morley-type virtual element method
for the Navier—Stokes equations in
stream-function form

6.1 Introduction

The two dimensional steady Navier-Stokes equations in its standard velocity-pressure form
reads as: given a sufficiently smooth force density f: Q — R?, find (u, p) such that

—vAu+ (Vu)u+ Vp =1, divu=0 in €,

6.1.1
u=0 on [I':=0Q, (p,1)oa =0, ( )

where u : Q — R? is the velocity field, p :  — R is the pressure field and v > 0 represents the
fluid viscosity. This system models the behaviour of a viscous incompressible fluid in the domain
Q. The first and second equations in (6.1.1) dictates the momentum and mass conservation of
the fluid, while the third identity indicates non-slip boundary conditions for the velocity field
and the last equation represents the mean value of p over (2 vanishing, which is used for the
uniqueness of the pressure solution. Due to the important role it plays in the study of viscous
incompressible flows, several numerical schemes have been developed to efficiently approximate
the Navier-Stokes system. In particular, we are interested in discretizing this system by using
general polygonal decompositions and introducing the stream-function of the velocity field.

In the last years, numerical methods for PDEs on polytopal meshes have received substan-
tial attention. Different approaches have been proposed (see for instance [149, 62, 86, 32, 80, 87,
108, 70] and the references therein), offering significant flexibility in terms of dealing with com-
plicated domains. Among them, we can find the Virtual Element Method (VEM), which was
presented for first time in [27], as an evolution of mimetic finite differences and a generalization
of the Finite Element Method (FEM). The approach of VEM allows to avoid an explicit con-
struction of the discrete shape functions and this fact implies a high flexibility of the method,
which is reflected, for instance in the ability to construct numerical schemes of high-order on
general polygonal meshes (including “hanging vertexes” and nonconvex shapes). Moreover, in
the construction of discrete spaces with high-regularity and of schemes with the divergence-free
property (in the context of fluid problems). In virtue of these features, the VEM technology has
enjoyed extensive success in numerical modeling and engineering applications, both in its con-
forming and nonconforming approaches (see for instance [58, 65, 29, 18, 39, 22, 126, 127, 66]).

128
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In particular, many works have been devoted to solving problems in fluid mechanics by using
the VEM. Below are two list of representative works in the conforming and nonconforming
cases; [17, 98, 35, 41, 3, 131] and [64, 118, 164, 119], respectively. For a current state of the
art on VEM, we refer to book [16].

In [20, 163] the authors have introduced fully-nonconforming VEMs of high-order, in-
dependently and by using different approaches to solve biharmonic problems. In particu-
lar, the lowest-order configuration (i.e., k& = 2) of these VEMs, can be consider as the ex-
tension of the popular Morley FE [141]| to general polygonal meshes. Since then, several
schemes and analysis based on these VEMs have been developed for linear problems; see for
instance [116, 159, 81, 107, 67, 4]. In the present work we are interesting to extend the Morley-
type VEM to solve the nonlinear fourth-order Navier-Stokes equations in stream-function form
on simply connected domains (not necessarily convex) by using general polygonal decomposi-
tions.

Typically, the velocity-pressure formulation (6.2.1) is the most used to discretize the Navier-
Stokes problem. However, the stream-function formulation has shown to be a competitive
alternative to discretize fluid flow problems in two dimensions, which has been the focus of
study in the last decades. In particular, we can highlight the following features: the system is
reduced in a singular scalar weak formulation, with automatic satisfaction of the incompress-
ibility condition (the velocity field is equal to the curl of the stream-function), the possibility
to recover further variables of interest such as the velocity, vorticity and pressure fields by
postprocessing from the stream-function. Besides, for nonlinear problems, the resulting trilin-
ear form is naturally skew-symmetric (without adding additional terms), allowing more direct
stability and convergence arguments. On the other hand, the stream-function approach avoids
the difficulties related with the boundary values for the vorticity field, which are present in
stream-function—vorticity formulation. Due to the attractive features discussed above, over last
decades the stream-function formulation has received great attention from many researchers.
In particular, in the area of Numerical Analysis several works have been devoted to the de-
velopment and study of efficient numerical schemes to approximate this system. For instance;
conforming and nonconforming FEMs in [71, 72, 91, 68|, bivariate spline [115], hp-version dis-
continuous FE [143], NURBS-based Isogeometric Analysis in [151]. Moreover, in [111] the
nonconforming Morley FEM have been used to solve the steady Quasi-Geostrophic equations,
which can be seen as an extension (in form) of the two dimensional Navier-Stokes equations in
stream-function formulation.

In the present contribution, we configure the Stokes complex structure of the nonconform-
ing VEM introduced in [164] to solve the fourth-order nonlinear Navier-Stokes equations in
stream-function form on domains not necessarily convex and employing general polygonal par-
titions of the domain, allowing additionally the reconstruction of the pressure field. By using
the enhancement technique, we introduce a discrete Stokes complex structure associate to the
Morley- and Crouzeix-Raviart-type Virtual Element (VE) spaces. Then, we construct suitable
projections useful to build the discrete trilinear form, which mimics the interesting and nat-
urally skew-symmetry property of the continuous version (see below Remark 6.3.2). In order
to establish the well-posedness of the discrete nonconforming formulation, it is necessary to
prove the continuity of the resulting discrete trilinear form with respect to the natural norm in
the Morley-type VE space Mj. However, this fact does not follow directly, since it involves a
discrete Sobolev inclusion (namely, M; C W1(Q)). The derivation of the Sobolev embeddings
require particular attention for the nonconforming approach, which is usually considered a chal-
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lenging task. To the best of our knowledge, this is the first work where Sobolev embeddings
for the Morley-type VE space are established. More precisely, with the aim of achieving such
purpose, we introduce a novel enriching operator, which is a special kind of quasi-interpolation
operator that maps the elements of the sum space between the continuous and nonconforming
spaces (namely, ® + M},) to the conforming counterpart of the nonconforming space. Then, by
using this operator and its approximation properties, we provide new discrete Sobolev embed-
dings for the sum space ® + M, and we prove the well-posedness of the discrete problem by
using the Banach fixed-point Theorem. Moreover, this inclusion is strongly used to obtain the
error estimates of the method (see Remark 6.4.2).

It well know that due to nonconformity of the space increases the technicalities in the
demonstrations of error estimates in the nonconforming approach, implying in some cases high-
regularity of the solution, which are not realistic. Furthermore, for nonlinear problems these
difficulties increase remarkably. In the present work, by employing the naturally skew-symmetry
property of the discrete trilinear form and the discrete Sobolev inclusion, we write an abstract
convergence result for the nonlinear VE scheme. Then, by exploiting again the enriching
operator, we establish key approximation properties involving the bilinear and trilinear forms,
together with the consistency errors, allowing the derivation of an optimal error estimate in
broken H2-norm under the minimal regularity condition on the weak stream-function solution
(see below Theorem 6.2.2). In addition, by using duality arguments and the enriching operator
we also provided new optimal error estimates in the H!- and L2-norm under the same regularity
conditions on the stream-function and the force density.

On the other hand, by exploiting the stream-function approach, we present techniques to
recover further variables of physical interest, such as, the primitive velocity and pressure vari-
ables, along with the important vorticity field. More precisely, we recover the velocity and
vorticity fields through a postprocess of the discrete stream-function by using adequate poly-
nomial projections, which are directly computable from the degrees of freedom. The pressure
recovery procedure require a special attention. Indeed, we approximate the fluid pressure by
employing the Stokes complex sequence associate to the Morley- and Crouzeix-Raviart-type
VE spaces, and solving an additional Stokes-like system with right hand side coming from the
virtual stream-function solution and the force density f. For all the postprocessed variables,
we provide optimal a priori error estimates. Furthermore, the numerical method is tested with
several benchmark tests, including the Kovasznay and cavity problems, where the theoretical
accuracy and the good performance of the scheme are corroborated.

We summarize the highlight of this article as follows:

e The development of a Stokes complex sequence associate to the Morley- and Crouzeix-
Raviart-type VE spaces allowing not only the approximation of the stream-function but
also the pressure recovery of the Navier-Stokes problem on simply connected polygonal
domains (not necessarily convex).

e The construction of a new enriching operator, which allows to prove novel discrete Sobolev
embeddings in the space sum ® + M,. Moreover, by using this operator, we develop a
rigorous analysis obtaining optimal error estimates in broken H'-norms (7 = 0, 1,2) under
minimal regqularity condition on the weak solution.

e Velocity, vorticity and pressure postprocessing algorithms with optimal error estimates
and performed numerical experiments that justify the theoretical error bounds and show
the good performance of the numerical scheme.
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The results presented in this study mark a significant milestone towards advancing the de-
velopment and analysis of novel numerical schemes based on the nonconforming Morley-type
VEM for solving fourth-order problems in more complicated situations, such as, nonlinear cou-
pled and/or time dependent systems present in the fluid and solid mechanics, and in large
scale driven ocean circulation. In particular, we note that the discrete Sobolev inclusion (see
below Theorem 6.4.1) can be used to establish a well-posedness analysis for the natural con-
vection problems in stream-function—temperature form, the von Karman plate system and the
multi-layer Quasi-Geostrophic equations of the ocean, among others.

The outline of the remaining parts of this chapter reads as follows: in Section 6.2 we
introduce some preliminary notations and the stream-function weak formulation of the Navier-
Stokes problem (6.1.1). Moreover, we recall its well-posedness and regularity property. The
Morley-type VE discretization, together with the Crouzeix-Raviart VE space are described in
Section 6.3. In Section 6.4 we introduce the enriching operator, provide the discrete Sobolev
embeddings and the well-posedness of the discrete problem by using a fixed-point strategy. In
Section 6.5 we develop the error analysis of the scheme under minimal regularity condition on
the weak solution. In Section 6.6 we describe the recovery techniques for the velocity, vorticity
and pressure fields by using the discrete stream-function solution. Finally, several numerical
tests on different polygonal meshes are reported in Section 6.7.

6.2 Preliminaries and continuous weak form

The Navier-Stokes in velocity-pressure weak form. The standard variational formu-
lation of problem (6.1.1) reads as: find (u,p) € H x @, such that

v(Vu,Vv)oo+ (Vu)u,v)oa — (p,div v)ea = (f,v)on Vv € H,
_(ga div u)O,Q =0 Vg S Qv

where the Hilbert spaces H and @) are defined by:

(6.2.1)

H={veH'(Q):v=0 on I} and Q:={geL?*Q): (9. 1)00=0}. (6.2.2)

It is well known that problem (6.2.1) admits a unique solution (see [103]) under smallness
assumption on the data. Moreover, several works have been devoted to develop numerical
schemes to approximate this formulation. For instance, see [35, 97, 118, 162| in the VEM
context.

In this work, we will study the Navier-Stokes equations with a different approach. More
precisely, under assumption that the domain is simply connected and by using the incom-
pressibility condition of the velocity field (i.e., div u = 0), we write an equivalent variational
formulation in terms of the stream-function of the velocity field.

6.2.1 The stream-function weak form

Since Q C R? is simply connected, is well known that a vector function v € Z :=
{veH:divv=0 in Q} if and only if there exists a function ¢ € H?(Q) (called stream-
function), such that v = curl .

Let us consider the following Hilbert space ® := {p € H*(Q) : 9 =0, Opp =0 on T},

and we endow this space with the norm |¢||2.q := (D%O,DQQO)(I)’/S% Vo € ®. Then, we have
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that a variational formulation of problem (6.1.1), formulated in terms of stream-function, read
as (see for instance [146, Section 10.4]): given f € L?(Q), find v € ®, such that

vA(,§) + B, ¢) = F(¢) Vo€, (6.2.3)
where the forms A: P x® - R, B: P x & xd - R and F : & — R are defined by:
A(¢> ¢) = (DQZD, D2¢)0,Q7 (624)
B(( ¢, ¢) = (A curl ¥, V@)oq, (6.2.5)
F(¢) := (f, curl ¢)y 0. (6.2.6)

From the definition of the bilinear form A(-,:) and equivalence of norms, we obtain its
O-ellipticity. Moreover, by using the Cauchy-Schwarz inequality we easily obtain:

[A(p, 9)| < [l¢llz.allll20 Vi, 0 € D,
|F(¢)] < Crllf]loalloll20 Vo € D,

where CF is a positive constant. Now, we recall the following continuous Sobolev inclusion: for
all v € H'(Q2)2, there exists Cy., > 0 such that

[V]La) < 5sobHVH1,Q- (6.2.7)

Then, by using the Hoélder inequality and the above inclusion, there exists Cp = é'zob > 0,
such that

|B((; ¢, 0)] < 61\3 [Cll2,0llell2.0llll2.0 V¢, 0,0 € P.

From the above properties and the fixed-point Banach theorem, we can prove that prob-
lem (6.2.3) is well-posed. More precisely, we have the following existence and uniqueness result
(see for instance, [103, Chapter IV, Section 2.2]).

Theorem 6.2.1. If C/;CFV_2Hf||O’Q < 1, then there exists a unique ¢ € ® solution to prob-
lem (6.2.3), which satisfies the following continuous dependence on the data

IWll20 < Crr~[£]lo.0-

Now, we state an additional regularity result for the solution of problem (6.2.3) (see for
instance [19]).

Theorem 6.2.2. Let ¢ € ® be the unique solution of problem (6.2.3). Then, there exist
v € (1/2,1] and Creg > 0, such that ¢ € H**7(Q) and

[ll244.0 < Cregllfllo.0-

6.3 Morley-type virtual element approximation

This section is devoted to the construction of a VEM to solve problem (6.2.3). We will
introduce a Morley-type VE space by using some auxiliaries local virtual spaces and the en-
hancement technique. More precisely, the present framework is based on the discrete Stokes
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complex sequence for the Morley- and Crouzeiz-Raviart-type VE spaces presented in [164]. This
Stokes complex structure will allow us to approximate the main unknown in problem (6.2.3)
and as an important topic, also it will allow to compute the pressure variable of the Navier-
Stokes system (6.1.1) as a postprocess, by solving a Stokes-like problem with right hand side
coming from the discrete-stream function solution and force density f (cf. Subsection 6.6.3).

We start with a subsection introducing the polygonal decompositions and some useful no-
tations, these preliminaries are followed by a subsection on the local and global nonconforming
virtual spaces, their degrees of freedom and the classical VEM local projectors. Later on, we
introduce other polynomial projections useful to build the discrete trilinear form.

The polygonal decompositions and basic setting

Let {Tn}r=0 be a sequence of decompositions of 2 into general non-overlapping simple
polygons K, where h := maxger, hx and hi is the diameter of K. We will denote by 0K, Nk
and | K| the boundary, the number of vertices and area of each polygon K, respectively.

For each element K we denote by & the set of its edges, while the set of all the edges in Ty,
will be denote by &,. We decompose this set as the following union: &, := &™ U &, where
& and ‘gf 4y are the set of interior and boundary edges, respectively. For the set of all the
vertices we have an analogous notation. More precisely, we will denote by %, := % U ”//hbdry
the set of vertices in Ty, where ¥,™ and Vhbdry are the set of interior and boundary vertices,
respectively. In addition, we denote by e a generic edge of &}, and by h, its length.

Besides, for each K € T, we denote by ng its unit outward normal vector and by ty its
tangential vector along the boundary K. Moreover, we will adopt the notation n, and t. for
a unit normal and tangential vector of an edge e € &}, respectively.

For every ¢ > 0 and ¢ € [1,400), we define the following broken Sobolev spaces

W(T) == {p € LX(Q) : ¢k € Wi(K) VK € Ty},

and we endow these spaces with the following broken seminorm:

1/q
Blean = (D 16l,)

KeTh

where | - |45 is the usual seminorm in W%¢(K). When ¢ = 2, we omit the index ¢ and write
H*(T5) instead W(T;,), with the corresponding seminorm denoted by | - ..

Next, we will define the jump operator across an edge e. First, for each ¢, € H*(Ty,), we
denote by ¢ the trace of ¢y |x=, with e C 9KTNAK~. Then, the jump operator [-] is defined
as follows:

(6] = {¢Z — ¢, for every e € &,

Onle for every e € éa,lodry.

The same notation is adopted for vectorial fields. Let us define a subspace of H?(7;) with
certain continuity:

H2NC(T) = {on € HA(Th) 60 € COH™), nlvi) =0 Wvi € B,

(M@%DWZOWG&}
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where C°(#,™) is the set of functions continuous at internal vertexes.
Finally, for every integer £ > 0, the piecewise /-order polynomial space is defined by:

Py(T5) == {x € L%(Q) : x|x € Pu(K) VK € T;}.

In what follows, we will introduce some preliminary spaces, which are useful to construct
the Morley-type VE space to approximate the solution of problem (6.2.3).

6.3.1 Some auxiliary spaces

For every polygon K € 7T, first we consider the following auxiliary finite dimensional
space |20, 163, 116]:

Mu(K) = {¢n € BAK) : A2y, € Py(K), Gple € Pa(e), Adple € Pole) Ve € K}

Next, for a given ¢, € /Wh(K), we introduce the following sets:
e D, 1: the values of ¢y (v;) for all vertex v; of the polygon K;

e D, 2: the edge moments (Oy, ¢pn, 1)o. Vedge e € &F.

For each polygon K, we define the following projector 1% : Mvh(K) — Py(K) C My(K),
as the solution of the local problems:
AR (IR n, x) = A% (0, x)  Vx € Pao(K),
(TR, x Nk = (b, X)) Vx € Pi(K),

where ((pn, ¢n)) i is defined as follows:

(o i = D ()

with v;, 1 < i < N, being the vertices of K and AX(-,-) is the restriction of the continuous
form A(-,-) (cf. (6.2.4)) on the element K.

—~

The operator 11 : M, (K) — Py(K) is explicitly computable for every ¢, € /\A/l/h(K), using
only the information of the linear operators D1 — D2 (for further details, we refer to [163]).

Now, we will introduce another auxiliary local spaces. Indeed, following [164] we define the
spaces:

UK) = {vh € H'(K) : div vy, € Py(K), rot vy, € Po(K), vy, -1, € Pi(e) Ve € 5,?},

and

Z(K) = {qsh CHAK): A% =0 in K, ¢nle =0, Adpl € Pole) Ve € g,f(}.

By adding /L?(K) and curl of the functions belongs to Z(K), we define the space
Uy(K) = U(K) + curl (Z(K)).

Then, for each v, € Uy(K) we introduce the set of vector-valued, bounded linear functional
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e Dy the edge moments he_l(vh, 1)o.e Ve € é?hK

We observe that Pi(K) C Uy(K), and we introduce the grad projection operator ITY. :
Uy(K) — P1(K) as the solution of the following problem:
(VIIXvL — Vi), VX)ox =0 Vx € Pi(K)?%,

6.3.1
(H[V(-Vh — Vp, 1)07(’9[( = 0 ( )

By using an integration by parts, we can deduce that the polynomial IIY. v}, is computable
for all v, € Uy(K) from the set of values Dy, (see [164]).

Next, by employing the grad projection operator ITY., we define the local Crouzeix-Raviart-
like VE space by:

Uy(K) := {vh € Uy(K) : (viy-n, —TIY vy -ng, X)oe Vx € Pi(e) \ Pyle), Vee fhK}

Further, from [164] we have that the set Dy, characterize uniquely the functions of U, (K).

Moreover, for each ¢, € M;(K), the function IIY.curl ¢, is computable using the sets D1
and D 2.
The global Crouzeix-Raviart-like space is defined as follows [164]:

U, = {vh € L2(Q) : vilx € Un(K) YK €Ty, ([va],1)oe =0 Vee @@h}. (6.3.2)

We have that the dimension of the space U, is equal to 2N, where N°" is the total number
of mesh edges of the discretization 7. This space will be useful in subsection 6.6.3 to present
the pressure recovery technique.

Remark 6.3.1. The nonconforming VE space defined in (6.3.2) coincides with the Crouzeiz-
Raviart finite element space when the polygon K is a triangle. Therefore, this space can be seen
as an extension of the classical Crouzeiz-Raviart space from triangle to polygonal element in
the nonconforming VEM context. For further details of this discussion, see [16/, Remark 8].

6.3.2 The Morley-type nonconforming virtual element space

By using the auxiliary spaces defined in the above subsection, for each K € 7}, we introduce
the local Morley-type VE space [164]:

M (K) ::{gbh € Mh(K) : (curl ¢, - n, — ITY (curl ¢y, - n..), X)o. = 0

(6.3.3)
Vy € Py(e) \ Pole) Ve € &X, (¢ — Mop, x)ox =0 Vy € IP’Q(K)}.

In the next result we summarize the main properties of the local Morley-type VE space.

Lemma 6.3.1. For each polygons K, the space My (K) defined in (6.3.3), we have Py(K) C
M (K). Moreover, we can deduce the following properties:

e The linear operators Dyl — D2 constitutes a set of degrees of freedom for M, (K);

e The operator Y. : M (K) — Py(K) is computable using the sets Dyl — D py2;
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e For each ¢, € My(K), the function IT1Y.curlgy, is computable using the degrees of freedom
Dyl — D2

With the above preliminaries we can introduce the global Morley-type VE space to the
numerical approximation of the problem (6.2.3). Indeed, for every decomposition T, of € into
polygons K, the global nonconforming VE space is given by:

My, = {on, € H*N(T,) : dnlx € My(K) VK € Ty} (6.3.4)

We have that M, C H*NY(T;), but M;, € ®. Moreover, we observe that the nonconforming
VE does not require C%-continuity over 2. This space can be seen as an extension of the popular
Morley FE [141] to general polygonal meshes. For further details about this discussion, we refer
to [164, Remark 20| and [163, Remark 4.1].

For the continuous bilinear form A(-,-), we adopt the following notation:

Alpn, én) =Y Ao, dn)  Von, én € O+ M,

KeTy

We also adopt the same notation by the continuous forms B(-;-,-) and F(-).

6.3.3 Polynomial projection operators and discrete forms

This subsection is dedicated to the presentation of other important polynomial projections,
along with the construction of the trilinear form and the load term, by using such projections.
Moreover, we build the bilinear discrete form.

For each m € NU {0}, we consider the usual L?-projection, IT% : L?*(K) — P,,(K), defined
by the function such that

(0 — RO, X)oxk =0 Vx € Pp(K). (6.3.5)

Moreover, we define its vectorial I} version in an analogous way. For the projection previously
defined we have the following result.
We recall that there exists Cpq > 0 such that (see [35]):

Tk AllLa) < Coalldllisgy  and  [IEQllox < [Igllorc Vo € LA(K). (6.3.6)

Lemma 6.3.2. Let 11%, [1% and 11} be the operators defined by relation (6.3.5) and by its vecto-
rial version. Then, for each ¢, € My(K), the polynomial functions 113 ¢y, 1% A¢y,, Ik curl ¢,
and 1LV ¢y, are computable using only the information of the degrees of freedom D1 — D ,2.

Proof. Let ¢, € M;(K), the proof of the function I1% ¢y, follows from the definition of the
space My (K) (cf. (6.3.3)). Moreover, using an integration by parts we obtain

(curl ¢, X)o.x = rot X (5 dn, Dok — (dn, X - tx)o.e Vx € Pi(K)?,

then we also conclude that the ITk-curl ¢, is fully computable from the degrees of freedom.
Similarly, we prove that the function I} V ¢y, is computable from the degrees of freedom D 1 —
D2
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Next, we will prove that the polynomial function I1%Agy, is also computable. Indeed, using
integration by parts, we have

M A¢n = [K|™ (Ony b, Doox = K17 (On.bn, Do,

ecOK
and note that the above integral is computable using the output values of the set D ,2. O

Now, we will build the discrete version of the continuous forms defined in (6.2.4), (6.2.5)
and (6.2.6) using the operators introduced previously. First, we consider the following discrete
local bilinear form, A% : M (K) x M;(K) — R approximating the continuous form A(,-):

A (on on) =AY (WRen, R én) + SE (L= on, T—T12)dn)  Veon, ¢ € My(K), (6.3.7)

where S5 (-, ) is any symmetric positive definite bilinear form to be chosen as to satisfy:

C*AK(¢h7 ¢h) < S§(¢ha ¢h> < C*AK(¢h7 ¢h) Yo € Ker(H%), (638)

with ¢, and ¢* positive constants independent of K. More precisely, we choose the following
computable representation satisfying property (6.3.8) (see [67, Lemma 5.1]):

K
Ndof

SE (on, on) == hid Z dof; (pn)dof;(on) Veon, pn € My (K),
=1

where NX. denote the number of degrees freedom of My (K) and dof,(-) is the operator that
to each smooth enough function ¢ associates the ith local degree of freedom dof;(¢), with

1<i<NE.

To approximate the local trilinear form BX(-;-, ), we consider the following expression:
By (Cus ons ) = (W AG Mecurl o5, T Ven) o Y, on, 00 € Mi(K).  (6.3.9)
Finally, for the functional (6.2.6) we consider the following local approximation:
Fyf (¢n) = (Tgf, curl ¢, )0k = (f, Hecurl ¢p)o Vo € My (K).

Thus, for all (}, ¢p, dn € My, we define the global multilineal forms, as follows:

Ay My x My =R, Ap(on, én) = > Af(on. én), (6.3.10)
KeT,
By : My x My x My, = R, Bp(Cus ony &) - Z B (Chi o, On), (6.3.11)
KeT,
P My =R, Fu(¢n) = > Fi(¢n). (6.3.12)
KeT,

We recall that all the forms defined above are computable using the degrees of freedom and
the trilinear form By(+;-,-) is extendable to the whole space ®.

The following result establishes the classical consistency and stability VEM properties (see
for instance |27, 22, 65, 164]).
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Lemma 6.3.3. The local bilinear forms AX(-,-) and AE(-,-) satisfy the following properties:

e consistency: for all h > 0 and for all K € T}, we have that

AR (X, dn) = A% (x, o) Vx € Py(K), Vo € Mu(K), (6.3.13)

e stability and boundedness: there exist positive constants aq and ag, independent of h and
K, such that:

ar A% (fn, dn) < AK (dn, dn) < aAX(dn, dn) Yoy, € Myu(K). (6.3.14)

Remark 6.3.2. We observe that the discrete trilinear form By(+;-,-), defined in (6.3.11) (see
also (6.3.9)), preserves the natural skew-symmetry property of the continuous trilinear form
B(+;+, ) defined in (6.2.5). Thus, we do not need to add any additional term in order to guar-
antee such property, unlike velocity-pressure virtual element formulations, where a transpose
term is added (see [162] in the nonconforming approach). This important fact has also advan-
tages from the computational viewpoint.

6.4 Discrete formulation and its well-posedness

In this section we write the nonconforming discrete VE formulation and we provide its
well-posedness by using a fixed-point strategy.
The nonconforming VE problem reads as: find vy, € My, such that

VAR (Un, &n) + Bu(Vn; Un, on) = Fu(on) Von € My, (6.4.1)

where the multilineal forms A(-,-), Bn(;+,-) and Fj(-) are defined in (2.3.12), (2.3.13) and
(2.3.15), respectively.

In order to prove that problem (6.4.1) is well-posed, in next section, we will introduce
an enriching operator E’h, from the sum space ® + M, into the conforming counterpart of the
space Mj. Moreover, we establish some approximation properties for this operator, and by
using such estimates we provide novel embedding results for the sum space ® + M,,, which will
be useful to establish the well-posedness of discrete problem and the error estimates.

We remark that the operator Fj, constructed here can be seen as an extension of the enriching
operator defined in [107] and the quasi-interpolation operator constructed in [75].

6.4.1 A new enriching operator

With the aim of introducing the aforementioned operator and establishing its approximation
properties, we start by assuming the classical assumptions on the polygonal decomposition.
There exists a uniform number p > 0 independent of 7, such that for every K € 7T, it holds
[27]:

A, : K is star-shaped with respect to every point of a ball of radius > phg;
A2 : the length h. of every edge e € OK, satisfies h, > phy.

From reference [74] we have that if the mesh 7y, fulfilling the assumptions A; and Aj, then
the mesh also satisfy the following property:
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P, : For each K € Ty, there exists a virtual triangulation T,X of K such that 7% is uniformly
shape regular and quasi-uniform. The corresponding mesh size hy of T,/ is proportional
to hg. Every edge of K is a side of a certain triangle in 7,%.

Remark 6.4.1. From property P1, we have that the number of triangles of each virtual trian-
gulation T, is uniformly bounded by a number L and the size of each triangle is comparable to
that of the polygon (for further details, see [7]]).

Now, for the sake of completeness, we will recall the construction of the H?-conforming
virtual space [18].

Conforming virtual local and global space. For every polygon K € 7T,, we introduce
the following preliminary finite dimensional space [18]:

WE(K) = {on € HA(K) : A%, € Py(K), dnlox € CO(OK), ¢l € Py(e) Ve C IK,
Vénlox € CU(OK), On, dn|e € Pi(e) Ve COK},

Next, for a given ¢, € WE(K), we introduce two sets DY and DS of linear operators from
the local virtual space WS (K) into R:

e D¢: the values of ¢,(v) for all vertex v of the polygon K;

e DC: the values of hy Ve, (v) for all vertex v of the polygon K,

where hy is a characteristic length attached to each vertex v, for instance to the average of the
diameters of the elements with v as a vertex. -

Now, we consider the operator IIy° : WE(K) — Py(K) € WS(K) associated to the
conforming approach, which is computable using the sets DS and DS (for further details see
[18, Lemma 2.1]).

Next, for each K € Ty, we consider the conforming local virtual space given by:

WE(K) = {on € WEE) : (9n = TIR n, o =0 Vx € Pa(K) |

For every decomposition 7;, of € into polygons K, we define the conforming virtual spaces
We:
Wy ={¢n€P: ¢nlx EWS(K) VK ET,}.

We recall that the global degrees of freedom are defined by DY and DS excluding the degrees
of freedom on the boundary I'.

Construction of the enriching operator. We will extend the ideas of [107, 75|. First,
we will introduce some additional notations. Indeed, for each vertex v € ¥}, and for all e € &),
we define the following sets (patches):

w(v) ::U{KEE:VEK} and  w(e) ::U{KEE:eEE)K}.
Moreover, for each K € 7T, we define

w(K)::U{[?G'E:KOI?#@},
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and for a function ¢, € H*(T}), we defined the following broken seminorm

1/2
onbeon = (3 Ianlg)

Kew(K)

We will denote by N(v) and by N(e) the number of elements in w(v) and w(e), respectively.
In addition, for any ¢, € ® + My, we introduce the piecewise L2-projection 112, as IT%py | =
0% (¢n|x), where 1% is the usual L2-projection onto Po(K) defined in (6.3.5).

Let NS, := dim(Wf), then as in [107, 75| we can relabel the degrees of freedom using a

C
Ndof

single subindex j = 1,..., N and will denote the degrees of freedom by {DJC}J-:1 , which are

C
associated with the shape basis functions {Cj};y:d‘l’f of the space W{. Employing this notation
the enriching operator Ej, : ® + M; — WY is defined by:

C
Ndof

Enen(r) =Y DF(Enpn)((),
j=1
where the degrees of freedom for Ehgph are determined by:
1. DEV(Ehgoh) = Ehgph(v) = op(v) Vv € ¥t
2. DY, (Enpn) == N LoReww) WV IPerlz(V)) Vv ey

The following result establishes approximation properties of the enriching operator Ej,.

Proposition 6.4.1. For all ¢, € ® + My, there exists C > 0 independent of h, such that

2

Z Wb — Ennl2x < Chiclonlswimyn VK € Th

J=0

Proof. First, we note that using the same arguments used in [107, Lemma 4.2] and |75, Lemma
4.1] (see also [4]), for all ¢, € & + M}, we have that

lon — Eh¢hHO,K < Chi|onlawireyn and  |ép — Eh%\z,l{ < Clon|2wk)n- (6.4.2)

Now, by using standard inequality and (6.4.2), there exists a constant C' > 0, independent to
hk, such that

6 — Endnlx < C(hi|dn — Enonlax + hitllén — Endnllo.x)
< C(hkldnlowim)n + Pichi | Onl2wim)n) (6.4.3)
< Chi|onl2.wE) h-

The desired result follows from (6.4.2) and (6.4.3). O



6.4. Discrete formulation and its well-posedness 141

6.4.2 Discrete Sobolev embeddings and properties of the discrete
forms
In this subsection we establish two important estimates, which are useful to prove the

continuity of the discrete multilineal forms. We start presenting the main result of this section,
which establishes discrete Sobolev embeddings for the space ® + M,,.

Theorem 6.4.1. For any 2 < q < oo there exists a positive constant C, independent of h, such
that
|Onl1.gn < Coon|Pnlon  Yon € O+ M,

Proof. Let 2 < q < o0, ¢y, € P+ M), and Eh O+ M) — th be the enriching operator defined
in the above subsection. Then, by using the triangle inequality, the embedding of H?(Q) into
W;(Q) and stability property in Proposition 6.4.1, we have that

|Onl1,gn < |On — Endnlign + | Erdrliq0

< |on — Eh%\l,q,h + C\Eh%b,n (6.4.4)

< |¢n = Endnlrgn + Clonlon.
In what follows we will estimate the term |¢), — thﬁhh%h in the right-hand side of (6.4.4).
To do that, for each K € Ty, we consider the sub-triangulation 7, of property P;. Next, let
o :=V(pp — Eh¢h)\K and @ be the image of ¢ under the affine transformation from 7" to the

reference triangle T. Then, by using scaling arguments and the embedding of H! (T ) into Lq(T)
there is C' > 0 independent of K, such that

|6n — Endnlrgr = lellaery < CITIY Bl 0z < CITIVIEI, 7
< C|T|(2 Q)/Qq(”S@HOT + hi |80|1 T)l/2
< C(h3) > D29(|gy, — Eponl? o + Wlon — Encnl3 )"
< ChG V(| ¢n — Engnl} i + B \on — Enonl3 )2,

where we have used the relation |T'| &~ h% and that the size of each triangle in 7, is comparable
with the polygon mesh size hx (see Remark 6.4.1).
Now, from the above estimate and Proposition 6.4.1 it holds

| — Eh%h,q,T < Chgfq)/thth,w(K),h < Ch?(/q‘¢h‘2,w(K),h- (6.4.5)

From bound (6.4.5) and since the number of triangles of each virtual triangulation 7,5 is
uniformly bounded by a number L (see again Remark 6.4.1), we obtain

‘Cbh - Eh¢h|1qK - Z |¢h - Eh¢h|1qT <C Z h%{‘qﬁh 2,w(K),h < CLI; |¢h 2,w(K),h’
TeK TeK

Summing over each K € Ty, using the fact that ¢ > 2 and a ¢?-norms inequality, along with
0 < h < C <1, we obtain

~ ~ 1/q 1/q
|6 — Endnlign = ( Z |pn — Eh¢h‘%q7[() < ChQ/q( Z |¢h!§,w(K),h)

KeTy, KeTy,

1/2
< ChQ/q( > ‘¢h‘%,w(K),h> < Chplan < Clénlan,

KeTh

(6.4.6)
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where the constant C' > 0 is independent of h.
Finally, combining the estimates (6.4.4) and (6.4.6) we conclude the proof. O

The next result has been established in [163, Lemma 5.1| and allows to show that the
application |- |2 is a norm in M.

Lemma 6.4.1. For all ¢, € My, is holds:
[Prlloe + [Bnlin < Clonlon,
where C' > 0 is a constant independent of h.

The following lemma summarize other properties of the discrete forms defined in (2.3.12)-
(2.3.15), which will be used to establish the well-posedness of the discrete problem.

Lemma 6.4.2. There exist positive constants CAh,&,é’\h, Cp,, independent of h, such that for
all Cp, pn, on € My, the forms defined in (2.3.12)-(2.3.15) satisfies the following properties:

|An(n, &n)| < Caplonlanldnlon — and — A"(Gn, n) > aldnls (6.4.7)
B(Chs ons o) < aL|Ch‘27h|90h|2,h|¢h|2,h7 (6.4.8)
B(Cn; &n, on) = 0, and  By(Ch; 0n; On) = —Bn(Chs O, on), (6.4.9)

[Fi(én)| < Cr, [Ifllooldnl2n- (6.4.10)

Proof. Properties in (6.4.7) are obtained from the definition of bilinear form A(-,-) and the
stability property (6.3.14). To prove (6.4.8), we use the definition of trilinear form By(-;-, ")
and Hélder inequality to obtain

/ / /
BulGionon) < Ca( 3 1860) (X lewrl gulibee) (X2 10l

KeTy KeTy, KeTy,
< Clhlanlenlianlonlian
< CulChla,nlenlan|dnl2n,
where @ = (CpaCsop)? > 0, and Cpg, Csop are the constants in (6.3.6) and Theorem 6.4.1,
respectively.
Finally, the proof of properties (6.4.9) and (6.4.10) are obtained from the definition of forms
Bh('; ‘, ) and Fh()
]

6.4.3 A fixed-point strategy

In this subsection we will develop a fixed-point strategy to establish the well-posedness of
discrete problem (6.4.1). Indeed, for a given &, € My, we define the operator

Th : Mh — Mh
& — T™(&) = on,
where ¢y, is the solution of the following linear problem: find ¢, € My, such that
VAR(n, dn) + Br(&n; on, on) = Fr(on)  Von € M.

Next, we consider the ball Y, := {¢y € My, : |¢p]an < Cr,(av) 7 ||f]loo}. Then, we have
the following result for the operator T".
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Lemma 6.4.3. The operator T" is well defined. Moreover, if
A = ChCr, (@) 2||f]loq < 1. (6.4.11)
Then, T" : Y, — Y}, is a contraction mapping.

Proof. The proof follows from the definition of operator T", Lemma 6.4.2 and the Lax-Milgram
Theorem.
O

We finish this section with the following result, which establishes that the discrete problem
is well-posed.

Theorem 6.4.2. If condition (6.4.11) is satisfied, then there exists a unique v, € My, solution
to problem (6.4.1) satisfying the following dependence of the data

[Wnlan < Cr, (@)~ fllo.0- (6.4.12)

Proof. The proof follows from Lemma 6.4.3 and the Banach fixed-point theorem.
]

Remark 6.4.2. We observe that to prove the well-posedness of the discrete problem (6.4.1) is
enough that the Sobolev embedding in Theorem 6.4.1 holds true just for the discrete space My,
(see Lemma 6.4.2 and Theorem 6.4.2). However, to prove the error estimates in H*-, H'- and
L%-norms we need that the Sobolev inclusion holds true for the sum space ® + M, (see below
Lemmas 6.5.2 and 6.5.6). For this reason we have built a new operator and provided a more
general result considering the sum space in Theorem 6.4.1.

Remark 6.4.3. We recall that the main motivation for considering the lowest order case is that
we can derive optimal error estimates under minimal condition on the weak stream-function
solution, i.e., v € H**7(Q), with v € (1/2,1] (¢f. Theorem 6.2.2 and Section 6.5). However,
by combining the strategies presented here and the construction of the Stokes complex sequence
of high order developed in [16/, Section 6.2], we can design a VE scheme of arbitrary order
k > 3 to approzimate problem (6.2.3) (and recovery the pressure field by using the algorithm
presented in Section 6.6.3). Moreover, by employing similar arguments used in the present work
and the ideas developed in [107, 75], we can extend the construction of an enriching operator
E,’i for the high-order case (see Subsection 6.4.1), which allow us to prove the well-posedness of
the high-order discrete problem. On the other hand, we observe that to obtain error estimates
the weak stream-function solution must have high regularity, i.e., v € H*™(Q), with v > 1.

6.5 Error analysis

In this section we will develop an error analysis for the VEM proposed in (6.4.1). By exploit-
ing the naturally skew-symmetry property of the discrete trilinear form, and the consistency
and boundedness properties of discrete bilinear form, we write an abstract convergence result
for the nonlinear VE scheme. Then, by using the enriching operator, we establish key ap-
proximation properties involving the bilinear and trilinear forms, together with the consistency
errors, which allow the derivation of an optimal error estimate in broken H2-norm under the
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minimal regularity condition on the weak solution (cf. Theorem 6.2.2). Moreover, by employing
duality arguments and the enriching operator we also establish optimal error estimates in the
broken H!'- and L2-norm under the same regularity condition on the stream-function v and the
force density f.

6.5.1 An abstract convergence result

We start with two technical lemmas involving the continuous and discrete forms B(-, -, ")
and By(-,-,-) defined in (6.2.5) and (6.3.11), respectively.

Lemma 6.5.1. Let B(+;-,-) be the trilinear form defined in (6.2.5). Then, for all ¢ € H>TH(Q),
with t € (1/2,1], and for all ¢ € H*(Q) and ¢y, € H'(Ty), it holds:

B(C; ¢, 0n) < Cll¢ll24eallell20ldnlim-

Proof. By using the Holder inequality, for each ¢ € H2T(Q2), with ¢t € (1/2,1], for all ¢ € H?*(2)
and for all ¢;, € H!(Ty,), we have

BGo.on < (X 18C0w0) (X 1¥6lim) (X 196nli)

KeTy, KeTy, KeT

< |Cl2a.0lela.0ldn]1h-

Then, from the Sobolev embeddings H?(Q2) < W(Q) and H?(Q) — W3(Q), with ¢ € (1/2,1],
we obtain

B(G e, 0n) < CllClla+tallellz.olénlin,
where C' depends only on 2. The proof is complete. O

Remark 6.5.1. Following the above arguments, we can also prove thatl for all { € H>TH(Q),
with t € (1/2,1], and for all ¢, € HY(T;,) and ¢ € H*(Q), it holds

B(C; ¢n, 0) < Cll¢ll24e.0lenlinlol2.0-

The following lemma is a consequence of the Sobolev embedding result for the sum space
® + My, (see Theorem 6.4.1).

Lemma 6.5.2. Let ¢ € ® and py, € M. Then, for each ¢, € My, it holds

| Br(; ¢, ) — Bu(ons on, dn)| < Ch(|90h\2,h!¢h|2,h + 1o = on+ dnlonlllellze + !@hb,h)) |On]2.n-
Proof. By adding and subtracting adequate terms together with property (6.4.9) we obtain

B (30, 6n) — Bu(on; on, n)
= Bn(#; ¢ — ¢n, on) + Bu(® — ©n; on, ¢n)
= Bin(p; 0 — on + én, &) — Br(; én, ¢n) + Br(ep — on + én; on, &) — Br(én; on, ¢n)
= Bi(pi — on + ¢n, ¢n) + Br( — @n + n; on, &) — Br(dni @n, ).

Thus, by employing Theorem 6.4.1 (with ¢ = 4), we conclude the proof.
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In order to derive the abstract error estimate for the nonlinear VE scheme, we will introduce
the following consistency errors. Let 1) € ® be the solution of continuous problem (6.2.3), then
we define:

Nu(; ) = v A, én) + B(;, én) — F(on) Von € My, (6.5.1)
Cr(v; én) = B(Y; 1, ¢n) — Bu(; 1, én) Vo € My,. (6.5.2)

The first term above measures to what extent the continuous solution 1 does not satisfy
the nonconforming virtual element formulation (6.4.1) and the second term measure of the
variational crime perpetrated in the discretization of the trilinear form B(-;-,-). In addition,
we define the following quantity:

|F'— Fy = sup |[£(¢n) — Fh(¢h)|.

orEM,, ’(rbh’Q,h
¢r#0

(6.5.3)

In Subsection 6.5.2 we will establish approximation properties for the above terms. Next,
we provide the following Strang-type result for our nonlinear VE scheme.

Theorem 6.5.1 (Abstract convergence result). Let ¢ and 1y, be the unique solutions to prob-
lems (6.2.3) and (6.4.1), respectively. There exists a positive constant C, independent of h,
such that

+
|Pn2,n |Pn 2,

. . Nu(@; n)| | [Ch(2h; dn)|
— < _ _ _
|—1p|2n < O(¢h1§4h | ¢h\2,h+xe]§1;l(fm |v—X|2.0+| F FthL;élA%h ( >>7
¢h7ﬁ0

where Ny (15 ) and Cy (5 +) are the consistency errors defined in (6.5.1) and (6.5.2), respectively.

Proof. Let ¢, € My, and set 6, := ¢, — 1. Then, by using triangle inequality we obtain

[V — Pplan < W0 — bnlan + |On]2,n- (6.5.4)
Now, from the property (6.4.7), the consistence of bilinear forms A% (-,-) (cf. (6.3.13)), we have
valopl3, < vAR(Oh, 0n) = vAL(dn, 1) — vAL(Yn, On)
= v Ap(Dn, 0n) — F(0n) + Bu(¥n; n, 0n)
=v > (AR (o —x.00) + AN (x =, 00)) +v > AR, 0,) — Fu(0n) + Bu(nivon, 0n)

KeTs, e
=v > (AF(6n = x.0n) + A (x = ¥, 81)) + (vA(, 6) — Fu(0n) + Bu(vhn; ¥n, 1))
KeT;,
-V Z (AhK(¢h - X (5h) + AK(X — 1, (Sh)) +Nh(¢; 5h)
KeT;,

+ [F(6n) — Fu(0n)] + [Br(¥n; ¥n, 0n) — B(); 1, 0n)],
(6.5.5)

where we have added and subtracted adequate terms and x is an arbitrary element of Py(7y).



146 Chapter 6. The Morley-type VEM for the Navier-Stokes equations

From the continuity of bilinear forms AX(-,-), AK(.,.), and by using the triangular inequal-
ity, we have

> (A (b — X, 00) + AR (x = ¥,81)) < C(lon — Plan + [ = X|2)0h ]2 (6.5.6)

KeTy
Now, we add and subtract the term By, (1;, ), then applying Lemma 6.5.2, we obtain

‘Bh(@bh;whﬁh) - BW%%%)’ < ’Bh(¢h;¢h,5h) - Bh(w;w,éh)l + |Bh(¢;¢>5h) - B(wé%(sh”

< a(|¢h|2,h|5h|2,h + |0 = dnlan(|ll20 + |¥nl2n)) [0n]2n + 1Ch(W; 1))
(6.5.7)

Therefore, combining (6.5.5)-(6.5.7), we get
v&Galzn < (1Y = Salan + 1 = Xlon) + Chltnlanlnlas
) = Fn(0n)] | Na(@:0n)] | [Cal¥; 9n)]

|0 |2,n |0n 2,5 |0n 2,5

From the inequality above, we obtain

- — F(6,)) — F,(0
va(l — Cu(va) " enlon)|0n|2n < C(W — Gnlon + [ = Xx|op + |7 h|)5h\2hh( Dl

N (15 0n)| 4 !Ch(wséh)!)

|02, |0n 2,5

+

By using (6.4.12) and condition (6.4.11) we have that (1 — é\h(y&’)_lwhb,h) >1—-X >0.
Therefore, from above inequality, we have

(Wiwin) |, [Grwidn)lyy

Oul < € (18 = dnlaun + 1t = x|z + IF = Fill + sup
’¢h|2,h |¢h|2,h

PnEM,
ér#0

Finally, the desired result follows from (6.5.4) and the above estimate.
[

The next step is to provide approximation properties that can be used in Theorem 6.5.1.
In next subsection we will establish such properties.

6.5.2 Approximation results and a priori error estimate

We have the following approximation result for polynomials on star-shaped domains.

Proposition 6.5.1. For every ¢ € H*™(K), with t € [0,1], there exist ¢, € Py(K) and C > 0,
independent of h, such that

||¢ - ¢7r||€,K S Ch?t_élqbb—‘rt,l(? (= 07 17 2.

For the virtual space M, we have the following approximation result (see [20, 163, 116, 67]).
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Proposition 6.5.2. For each ¢ € H*™(Q), with t € [0,1], there exist ¢ € My, and C > 0,
independent of h, such that

¢ — b1l < CRE " 0lorsx, ¢=0,1,2.

Let B, : M}, — W,(f be the restriction of the operator Eh to the space My, i.e., B := Eh\Mh.
We note that this operator satisfies the approximation properties in Proposition 6.4.1. Then,
by using the operator Fj, we will establish an error estimate involving the bilinear form A(-, ),
which will be useful to obtain an error estimate in broken H?-norm under minimal regularity
condition on the exact stream-function ¢ (cf. Theorem 6.2.2).

Lemma 6.5.3. Let p € H*™(Q), with t € [0,1]. Then, for all ¢, € M, there exists a positive
constant C', independent of h, such that

A, 6 — Enén) < Ch'|l@llare.aldnlon-
Proof. The proof has been established in |4, Lemma 4.10]. O

The following result establishes error estimates for the consistence errors N, (1;-) and
Chn(1;+) defined in (6.5.1) and (6.5.2), respectively.

Lemma 6.5.4. Let 1y € H*77(Q)N® be the solution of problem (6.2.3). Then, for all ¢, € My,
there exists a constant C > 0, independent to h, such that

N (W5 n)| < CRY([9]244.0 + [[Ello.o)|onl2n,
Ca (s 0n)| < CRY([Yllve + 10l 0) 1€l 245,01 dnl2n-

Proof. Let ¢j, € Mj,. Then, we can take Ep¢, € WY C @ as test function in (6.2.3) to obtain

VAW, Exdn) + B(; 0, Engr) = F(Enén). (6.5.8)

Thus, from (6.5.1) and (6.5.8), we get

Nu(@; ¢n) = VAW, ¢n) + B(; b, on) — F(édn — Entn) — F(Enon)

6.5.9
= VAW, on — Enon) + B(Y; 9, o — Enen) — F(én — Enodn). ( )

By using the identity (6.5.9), the Cauchy-Schwarz inequality, Lemmas 6.5.1, 6.5.3 along
with Proposition 6.4.1, we get

Nu (5 on)| < CvRY([9]l214,0lPnl2n + ClYl2iqy.alvlealdon — Endnlin + Crllflloaldén — Endnlin
< CRY([[Y]l24+.0 + [Ifllo0) | @nl2.n,

where C' > 0 is independent of h.
The proof of second property follows by adapting the arguments used in [136, Lemma 4.2]
to the nonconforming case and using Theorem 6.4.1. [

For the consistence error in the approximation defined in (6.5.3), we have the following
result.
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Lemma 6.5.5. Let f € L?(Q), F(-) and F,(-) be the functionals defined in (6.2.6) and (6.3.12),
respectively. Then, we have the following estimate:

I1E" = Full < Chlfflo-

Proof. The proof follows from the definition of the functionals F'(-) and F},(-), together with
approximation properties of the projector IT}. O

The following result provides the rate of convergence of our virtual element scheme in broken
H2-norm.

Theorem 6.5.2. Let ) € ®NH*(Q) and ¥y, € My, be the unique solutions of problem (6.2.3)
and problem (6.4.1), respectively. Then, there exists a positive constant C, independent of h,
such that

[ = Pnlon < CR([[P]l2407.0 + [[fllog)-

Proof. The proof follows from Theorem 6.5.1, Propositions 6.5.1 and 6.5.2, together with Lem-
mas 6.5.4 and 6.5.5. O

6.5.3 Error estimates in broken H! and L2

In this section we provide new optimal error estimates in broken H'- and L2-norms for the
stream-function by using duality arguments and employing the enriching operator Ej, under
same regularity of the weak solution ¢/ and data f, considered in Theorem 6.5.2.

We start establishing the following key preliminary result involving the forms B(-;-,-) and
By (+;+,+), which will be useful to provide the error estimates in the weak norms. This term will
deal with the consistency error associate to the trilinear form present in the VEM approach
and as we will observe, its manipulation is not direct, so it will require special attention due to
the nonlinearity involved.

Lemma 6.5.6. Let v € @ NH*™(Q) and 1, € My, be the unique solutions of problems (6.2.3)
and (6.4.1), respectively. Assuming that £ € L*(Q) and let ¢ € H*™(Q), with t € (1/2,1].
Then, it holds

Tr(p) := Br(vn; ¥n, ©) — Bbn; ¥n, ©) < C (B + B2) (|Ellog + [[¥]l244.0) [[@ll2460
+ 2C:egC2 1, Coal|f 0,0t — Ynlinllellien,

where C' > 0 is a constant independent of h, and 6’sob, Creg and Cpq are the constants in (6.2.7),
Theorem 6.2.2 and (5.3.5), respectively.

Proof. By using the definition of trilinear forms B(-;-,-) and By(+;-, ), adding and subtracting
suitable terms and using the orthogonality property of the L2-projections, we have the following
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identity
Tp(p) = Y (A, — I Avy) (curl ¢y, — curl ), Vip)o
KeTy,
_l_

19, (A, — Av)(curl oy, — jecurl ¥y, ), Vip)o x
I (A (¢, — ) eurl ¢y, Vo — I V)o i
1% AUTT (curl (v, — ), Vg — Ik Vip)o,
5 A (curl ¢y, — Tecurl ¥y), Vo)o ke + (At — Ay )curl ¢, Vo)o k
+ (I Ay Higcurl v, Vo — T V) i
=Ti+To+ T3+ T+ Ts5+ T+ Tx.
In what follows, we will establish estimates for each terms on the right hand side of the previous

identity. For the term 77 we use the Holder and triangle inequalities, along with approximations
properties of I1%, to obtain

Ty < ) ([ Ag, — DAy |lokllcurl ¢y, — curl ]|uage | Ve Lo
KeTy,

< > @AY = Ao + 1A = AW lo,x0)leur] (vn — ) [[Laio) | Velluac)

KeTy
< O = Ynlon + P ||Y ]l 244.0) [0 — Ynlianl VellLyq)
< R (Ifllog + 1Y l249.0) |¢ll2+e.0,

where we have used the Holder inequality (for sequences), continuous Sobolev inclusion, along
with Theorems 6.4.1 and 6.5.2.
Now, for T5 we follow similar arguments to obtain

T, < Ch([fllog + ¥ l2400) lll2+e0-

For the term T3 we employ again the Holder inequality, the continuity of the projector ITk.,
along with Theorems 6.4.1 and 6.5.2, to obtain:

Ty < > (A, — AY) o,k [T ccurl ¢ |Ls ) | Ve — T Vo |La )

KeTn
< Cl = Ynlonlnlianh' IV olwio)
< CR([[f[loe + 1924 0)[@ll21e.0-

For the term T}, we follow similar steps to those used above, to get
Ty < Y % A]Jo k[T curl (g — ) ||Ls) | Ve — T Vol s
KeTy
< CH([[fllo0 + [[¥]l2400) [l 242.0-
Next, for the term Ty, we add and subtract suitable terms, use the Hdélder inequality,

properties of the L2-projections ITk and I1%, together with continuous Sobolev embeddings to
obtain

(
(
(
(

Ty < > %A |pagro lleurl ¢, — Miccurl vy o x| Veol|Lax

KeTy,

< (2] = nlin + CL ¢ ]|244.0) (CoallAY||La) [Veellta@)
< 2C1egC2 Crallf ot — Unlinllellisee + CR ¢ ||l24q.0l @l 24,0
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Repeating the same arguments, we obtain the following bounds for the terms Ts and T%:

Ts +Tr < CRT([Iflloe + 1Y l24r.0) ]l 240-
Finally, by combining the above bounds we obtain the desired result. O]
Moreover, for the bilinear form A(, -) we have the following auxiliary result [4, Lemma 4.11].

Lemma 6.5.7. For p € H*™(Q) and ¢ € ® N H>T(Q), with t € [0,1], it holds:

A, ¢ — o1) < CP*[|llarr0ll 2410,
where ¢p; € My, is the interpolant of ¢ in the virtual space My, (cf. Proposition 6.5.2).

In order to establish the desired error estimates, we consider the following assumption:

202, C2, Coallf]lo < 1, (6.5.10)

reg

where Ciop, and Creg and Cyq are the constants in (6.2.7), Theorem 6.2.2 and (5.3.5), respec-
tively.
The following theorem establish the main result of this subsection.

Theorem 6.5.3. Let ¢y € PNH*Y7(Q) and i, € My, be the unique solutions of problems (6.2.3)
and (6.4.1), respectively. Then, under assumption (6.5.10) there exists a positive constant C,
independent of h, such that

1 — Unllog + ¥ = ¥nlip < CR([[¢]244.0 + [|Ello.0)- (6.5.11)

Proof. First we will prove the H' estimate in (6.5.11). With this aim, let ¢; € M), be the
interpolant of 1 such that Proposition 6.5.2 holds true. We set 0y, := (¢, — ¥1) € My,. Then,
we write

Vp — Y = (Yo — Y1) + (Y1 —¥) = (Y1 — ) + (6p — Epdn) + Endp.

Thus, by using the triangle inequality together with Propositions 6.4.1 and 6.5.2, along with
Theorem 6.5.2, we obtain

1 — Unlin <0 —Urlin + 10n — Endnlin + |Endnlin < CR*||[Y]l2sr.0 + [[VERSk] 0o (6.5.12)

Now, the goal is to estimate the term ||V E,d4l/00. To do that, we consider the following dual
problem: given ¢) € ® (the unique solution of the formulation (6.2.3)), find ¢ € ®, such that

AP (130, 8) i= vA(p, ¢) + B(; 0, 0) + B(p;9,¢) = (V(Epdn), Vloo Ve € @, (6.5.13)

where A(-,-) and B(-;-,-) are the continuous forms defined in (6.2.4) and (6.2.5), respectively.
Following the same arguments in [111], we have that problem (6.5.13) is well-posed and from
Theorem 6.2.2, we obtain that ¢ € ® N H?™7(Q) and

|6ll247.0 < Cregl| VELL 0.0, (6.5.14)

where C' > 0 is a constant independent of h. Taking ¢ = E,d, € WS C ® as test function,
adding and subtracting J; in problem (6.5.13), we get

IVERn|§ 0 = AP (05 Endn, ) = APV (45 Ewbyy, — 65, ¢) + AT (464, 0) = [ + L. (6.5.15)
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Now, we will obtain bounds for the terms I; and I, in the above identity. For I}, we apply
Lemma 6.5.3, Remark 6.5.1, Propositions 6.4.1 and 6.5.2 to obtain

I == APP(¢; Epéy — 61, 0)
= VA(Ewon — 0, @) + B(; Evép, — On, @) + B(Epdn — 031, @)
< Cvh(0plonlldll214.0 + CllYll214.0l Erdn — nlipll@lle0 + B(ERdy — 0n3 ¢, ¢)
< Cvh*|[¢ll24rall@llziv + CP* 9]z all@llz.0 + B(Ewdn — 0n; 9, ).

(6.5.16)

To estimate the term B(E.d, — 0x;1, @), we start recalling that 1, ¢ € H>T(Q), with v €
(1/2,1], then by using the Sobolev inclusion H?*7(Q) — W}(Q), we have

eurlyy - Volio < [leurl ¥4l VElliae < Copllvllarralldllera < +oo.

Therefore, curlvy - V¢ € HY(Q2) (hence belongs to H'(K) for each K € 7). Thus, by using the
definition of B(;-, ) we have

B(Endn — 01, 6) = D> (A(Budy — 6n), curl ¢ - Voo x

KeTy

< NA(ELS = )l -1 klcurl ¢ - V|| k.

KeTy,

Now, by using the definition of the dual norm and an integration by parts, we obtain

IA(ERSK — 6p)||-1x = sup (A(Endn — 0n),p)ox _ sup (V(Endn — 01), Vo)ox

peHL(K) |1k peHL(K) lolix
< |Enén — onl1.x-

From the two estimates above, the Holder inequality for sequences, Proposition 6.4.1 and esti-
mate (6.5.14), we have

B(Eh5h — Op; 1, ¢) < Z |Eh5h - 5h\1,KHCUI‘1 (O V¢H1,K < |Eh5h - 5h\1,hHCUI‘1 (o V(le,Q
KeTy

< Ch|[Yllzarllllzir.0 < Ch7[¢]|24r0ll V Endno.0-

Consequently, inserting the above inequality in (6.5.16), we arrive to
I < CR?||Yla4r.0llV Endnllo.o- (6.5.17)

Now, we will estimate the remaining term I5. Indeed, we split again oy, := (¢, — ) + (¢ — ¥yp),
then

I = —APP (s p — by, @) + AP (030 — ¢, ¢) =t — Iy + Lo (6.5.18)

By using analogous arguments as those employed to bound the term I; and applying Proposi-
tion 6.5.2 and Lemma 6.5.7, we obtain

Ly < Ch*|[Y||la1y.0l| VERSk 0.0 (6.5.19)
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Next, adding and subtracting ¢;, B(1; 1, ¢;) and other suitable terms together with the defi-
nition of the continuous and discrete problems (cf. (6.2.3) and (6.4.1), respectively), we get

Iy ZVA(%U @bh, ¢) + B(Y; ¢ — ¥, ¢) + B( — ¥n; 0, 9)
= VA() = n, ¢ — ¢1) + VAW — Up, ¢1) + B(Us ) — by, @) + B(Y — Un; ¥, ¢)
= VAW ¢h, ¢ — ¢r) + F(o1) — Fu(ér) + vAR(Yn, é1) + Br(¥n; ¥n, 1)
— B(;9, ér) — vA@Wn, é1) + B(W;9 — ¥, ) + B(Y — ¢n; ), ¢)

6.5.20
A — 6 — 1) + [ An(tbn 1) — AW b0)] + [F(0r) — Fy(6) (6:520)
+ [Br(Un; ¥n, 01 — ¢) — B(¥; 9, o1 — ¢)]
+ B¢ — ;¥ — tn, @) + [Br(Un; n, @) — B(Un; tn, ¢)]
=:Ta1 +Tao+Tr +Tp1 +Tpy + Tps,
where we have used also the identity
B(; ¢ — b, @) + B(Y — ¥ ¥, @) + Bu(Un; n, @) — B(¥;1), @)
= B = ni b — i, @) + [Br(¥n; Yn, @) — B(Wn; n, ¢)].
Applying standard arguments and (6.5.14), we obtain that
Ty + Taz + Tp + Tpa < CP* (|[fllo0 + [[¢]l244.9) |V Erdallog. (6.5.21)

For the remaining term Tz, we employ Lemmas 6.5.2 and 6.5.4, to obtain

Tp1| < |B(W; 4, 91 — @) — B(;9, 61 — )| + [Bu(¥; 0, 61 — @) — Bu(¥on; ¥, é1 — ¢)|
< CR ([ llisr.e + [0l 1¥]l244.0]0r — @l2n
+ Co ([Ynlanlér = Blon + 1 = ) + (61 = )18 llo.0 + [¥nlan)) |61 = Slan
< O (|Wllism.0 + 19 ll20) 191264,V Evdnlloo
+ R ([[9]l21v.0 + Iflloe) ([¢]l2.0 + [¥nl2n) 1V Endnlloq

+ CR ([¥]l2,0 + [Ynl2) |V Endnllo.0.
(6.5.22)

where we have used Theorem 6.5.2 and (6.5.14). For the term T'g3, we observe that T3 = Ts(¢),
then by using Lemma 6.5.6 and (6.5.14) we get

Ty < ChP ([¢l|24.0 + IEllo0) |9l24.0 + 2CeegCin, CoallEllolt? = wnlinlléllosr0

< CR ([¢]la4v.0 + [Ell0.0) |V Endnllo.o + 2C2C2CoallElloalt> — wnli Y Endllo.0
(6.5.23)

Combining (6.5.18)-(6.5.23), we have

L] < C([[]l214.0 + [[Elloo) |V Erdnlloo + 2Cfegcszob0bd|’f|’0,ﬂ\¢ — Unl1nllVEROnlloq. (6.5.24)

The H' error estimate follows by combining the estimates (6.5.12), (6.5.15), (6.5.17) and
(6.5.24) together with the fact that (1 — 2C2_C2, Cpallf]lo.c) > 0 (see assumption (6.5.10)).

reg~'so
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Finally, the L% estimate in (6.5.11) is obtained from the triangle inequality, Propositions 6.4.1
and 6.5.2, Lemma 6.5.7 together with Theorem 6.5.2, as follows:

1Y = Ynlloe < |v — Yrllog + [16n — Endnlloq + || Endnlloq
< Ch*M[W||aq.0 + Ch2(|thn — lop + [0 — rlan) + C|ERSy
< Ch(|[¢ll21y.0 + [Ifllog),

1,0

where we have used norm equivalence in . The proof is complete. O]
We finish this section establishing the following remark.

Remark 6.5.2. If f is a smooth function, then applying an integration by parts and the bound-
ary conditions in (6.2.6), we have that (f,curl ¢)oq = (rotf,@)oq Vo € . Inspired by this
wdentity, we can consider an alternative right hand side to write a discrete problem, as follows:

Fy(on) == Z (rot £, 1% ¢n)ox Vo € My, (6.5.25)

KeTy,

We note that ﬁh() is fully computable using the degrees of freedom D1 — D2, since 1% is
computable (c¢f. Lemma (3.3.2)).

For the VE scheme (6.4.1) considering the alternative load term (6.5.25), we can provide an
analogous analysis as the one developed in the above sections. Therefore, we can obtain rate of
convergences as in Theorems 6.5.2 and 6.5.3 (with the minimal reqularity condition on the force
density £, i.e., £ € H(rot; Ty)). We will present a numerical test to confirm the error estimates
in this case (cf. Subsection 6.7.4). Moreover, we observe that if the load term is irrotational,
i.e., £ = Vo (for some @), it is possible improve the error estimate in Theorem 6.5.2 by
removing the dependence of the error by the load term f.

6.6 Postprocessing of further fields of interest

In this section we propose postprocessing techniques that allow us to obtain approximations
of the velocity, vorticity and pressure fields from the discrete stream-function 1. Moreover,
we provide optimal error estimates for all the postprocessed variables.

6.6.1 Postprocessing the velocity field

In order to propose an approximation for the velocity field, we recall that if ¢» € ® is the
unique solution of continuous problem (6.2.3), then

u = curl . (6.6.1)
At the discrete level, we define a piecewise linear approximation of the velocity field u as
Up| g := jcurl ¢y, (6.6.2)

where ¢, € M,, is discrete virtual solution delivered by solving problem (6.4.1) and the operator
I1}, is defined by the vectorial version of (6.3.5).
We have the following result for velocity vector uy.



154 Chapter 6. The Morley-type VEM for the Navier-Stokes equations

Theorem 6.6.1. The discrete velocity field v, defined by the relation (6.6.2) is computable
from the degrees of freedom D1 — D 2. Moreover, under the hypotheses of Theorem 6.5.2,
there exists a positive constant C, independent of h, such that

u =0 + A7 a— |10 < CR([[Y]l214.0 + [[E]lo0)-

Proof. From Lemma 6.3.2 we have immediately the computability of u;, by using D1 — D 2.
On the other hand, the error estimates, follow from (6.6.1), (6.6.2), the triangular inequality,
stability property of IIk., together with Theorems 6.5.2 and 6.5.3.

m

6.6.2 Postprocessing the vorticity field

Due its importance and applications in fluid mechanics, different works have been devoted to
approximate the vorticity field of the incompressible Navier-Stokes equations; see for instance
[44, 102, 13] and the references therein. By solving the nonconforming discrete problem (6.4.1),
we only obtain an approximation for the stream-function. Nevertheless, in this subsection
we propose an approximation for the vorticity field w via postprocessing formula through the
discrete stream-function 1, and the projection II% defined by the relation (6.3.5).

First, we recall that w = rotu, then using the identity u = curl ¢, we have obtain w =
rot u = rot(curl ¢) = —Aq). Then, at discrete level we define the following approximation for
the vorticity:

Wik = —H%(A@bh)a (6.6.3)

where ¢, € M}, is the unique solution of problem (6.4.1) and II% is defined in (6.3.5).
We have the following result for the discrete vorticity.

Theorem 6.6.2. The discrete vorticity field Wy, defined by the relation (6.6.3) is computable
from the degrees of freedom D1 — D 2. Moreover, under the hypotheses of Theorem 6.5.2,
there exists a positive constant C, independent of h, such that

lw = @nllog < CHY([¢ll2v0 + IElog).

Proof. The proof follows by using the same arguments in Theorem 6.6.1.

6.6.3 Postprocessing the pressure field

This subsection is devoted to developing a strategy to recover the pressure variable form
the discrete stream-function solution v, of problem (6.4.1), which is based on the algorithm
presented in [72] and extended to the nonconforming VE approach.

We start by recalling that if ¢ € ® is the unique solution of the weak formulation (6.2.3),
then the velocity field is given by u = curl . Thus, we can write

b(v,p) := (p,divv)po =v(Vu, Vv)oo + (Vu)u,v)oo — (f,v)on

6.6.4
=v(Veurly, Vv)oq + (Veurly)curl ¥, v)o o — (£, v)oq Vv e H. ( )

Now, we consider the functional F(¢,f)(:) : H — R given by

F,£)(v) :=v(Veurl ¥, Vv)oq + (Veurl ¥)curl ¢, v)o o — (£, v)oq Vv eH. (6.6.5)
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By using (6.6.4) and (6.6.5), we reformulate (6.2.1) as a variational problem for the pressure
variable: given ¢ € ® the unique solution of problem (6.2.3) and f € L?(Q2), find p € @ such
that

b(v,p) = F(¢,f)(v) Vv € H, (6.6.6)

where H and @ are the spaces defined in (6.2.2). From an equivalence of problems and the
LBB theory we have that problem (6.6.6) has a unique solution p € @ (see [103]).

The difficulties to discretize directly problem (6.6.6) have been discussed in [71, Section 9].
Thus, inspired in this work we consider the following equivalent problem: find (w,p) € H x Q,
such that

a(w,v) +b(v,p) =F@,f)(v) VveH
b(w,q) =0 Vg € Q,

where a(v,v) := (VV,Vv)q Vv,v € H. We have that this Stokes-like problem is well-posed.
Moreover, w = 0. Now the goal is to discretize problem (6.6.7).

(6.6.7)

Nonconforming Crouzeix-Raviart-type VE discretization

In this subsection we will present a VE scheme to solve problem (6.6.7). First, we recall that
the Morley-type VE space My, is in a Stokes-complex relation with the Crouzeix-Raviart type
VE space U}, defined in (6.3.4) and (6.3.2), respectively. Apart from the previously mentioned
spaces, we introduce the space for pressure approximation as

Qn:={g €Q:qnlxk € Py(K) VK €T} (6.6.8)

At last, we introduce the auxiliary space

/ah = {Vh e Uy : Z (qh,div Vh)O,K =0 Vg€ Qh}, (669)
KeﬁL

where U, is the Crouzeix-Raviart-type VE space defined in (6.3.2).

Lemma 6.6.1. Let Mj, and Uy, be the spaces defined in (6.3.4) and (6.6.9), respectively. Then,
it holds that

curl M, = ah,

Proof. The proof can be followed from [2, Lemma 6.1]. O

By employing the projection operator ITY. defined in (6.3.1), we discretize the bilinear form
a(+,-) through the bilinear form ay, : U, x U, — R, which is such that

ap(Wp, vp) == Z ar (W, vi) = Z (aK(HIV(uh, IIYvy) + So (T — Y )uy, (I - HZ)V;J),
KeTh KeT,

where S& (-, -) is a symmetric and positive definite bilinear form satisfying the stability condition

cua™ (vi, vi) <SS (v, vi) < a’ (v, vi) Vv, € Ker(ITY,),
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for some pair of strictly positive, real constants cyx and ¢, independent of h. Then, we define
the bilinear form by, : U, x Q, — R as

bh<vh>qh> = Z (qh,diV Vh)U,K- (6610)
KeTh

The next step is the construction of a discrete version of the lineal functional defined
in (6.6.5). To do that, first we consider the constant vector field II% : U,(K) — Po(K)?,
defined on U, (K). Then, we consider the following discrete functional F,(¢vp, £)(+) : Uy — R

Fn(p, £)(vy) == Z <aK (H]V(curl Up, H[V(Vh) + ((VIIjcurl ¢, I curl ¢y, — f, H%Vh)()’K).
KeTy
(6.6.11)

From the stability properties of projectors ITy., IT}. and I1%, we have that the F, (v, f)(-) is
continuous. Moreover, the projection IT% is computable by using the degrees of freedom Dy,.
Then, from this fact and Lemma 6.3.1, we conclude that this functional is fully computable.

Now, we present the nonconforming VE discretization of the Stokes problem (6.6.7) that
reads as: find (wy, pn) € Uy X Qp, such that

an(Wn, Vi) + bn(Vi, pr) = Fr(tn, £)(va) Vv, € Uy,
br(Wh, qn) =0 Van € Qn,

where (), is the space defined in (6.6.8).
The scheme (6.6.12) is well-posed since ap(+,-) is coercive and continuous, the bilinear form
by (+,-) is continuous and satisfies a discrete inf-sup condition on the pair of functional spaces

U-Qp, (see [164]) and curl M, = U,. We summarize this fact in the following result.

(6.6.12)

Theorem 6.6.3. Let by, (-, ) be the discrete bilinear form defined in (6.6.10). Then, there exists
a strictly positive, real constant 5 > 0 such that

br(Vh, qn
sup  2VRG) 5 e Vo € Qi
vire Up\{0} !th,h

Moreover, there exists a unique (Wp,pp) € Up X Qp, solution of problem (6.6.12).

Error estimate for the pressure scheme

In this subsection we develop an abstract error result for the VEM presented above. More-
over, we provide error estimates involving some consistent errors. Finally, by combining these
results we derive an optimal error estimate for the pressure field.

First, we focus on deriving a bound on the difference between the functional (6.6.11) applied
to the stream-function v solving the continuous variational formulation (6.2.3) and its virtual
element approximation solving problem (6.4.1).

Lemma 6.6.2. Let v € ® and ¢, € M, be the solution to problems (6.2.3) and (6.4.1),
respectively. Moreover, let Fp,(¢,£)(+) and Fp(vn,£)(:) be the functionals defined in (6.6.11)
(applied to 1 and 1y, respectively). Then, there exists positive constant Cr, , independent of h,
such that

| Fu (0, £)(vi) — Fn(ton, £)(vi)| < Cr v — Unlon| Va1
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Proof. Upon employing the definition (6.6.11), we obtain

| P, £)(vi) = Fu(thn, £)(vi)| < v Z |a™ (TTY curl (¢ — ty,), IIY vy,)|

KeTy

+ 3 (VI eurl ) ccurl v, I vy )o,x — ((VITjeurl vy, Ijcurl vy, Tev,)o k|-
KeTn

Since IIY is a continuous operator with respect to the Hl-inner product, we bound the first
term as follows

v Y | IV curl (¢ — ), TV v3)| < Colyon — Glon Vil
KeTy,

By adding and subtracting the term ((VII}.curlyy,)II}.curley, I1%v,)o i, applying the Holder
inequality and Theorem 6.4.1, along with stability properties of projectors ITY., IT% and TIY.,
we obtain

> |(VITcurl )T jccurl ¢, T vi)ox — ((VITjccurl v, )T ccurl ¢, TT3va)o k|
KeTy,

= 3 |(VITkcurl (4 — vy))Icurl ¢, TI%v,)o x|

KeTy,
+ |(TTcurl ¥, ) I jcurl (¢ — ¥y), TT}vy)o k|
< ClY = YnlanlVl2.0lVilin + ClYnlanl — Ynlan| Vil

The desired result follows by combining the above estimates. O]

In continuation, we define the consistency error ©y(-, ) as follows: given 1) € ® the solution
of problem (6.2.3), we consider

@h(w; Vh) = fh(Z/}, f)(Vh) — bh(Vh,p> Vv, € U,,. (6613)
We have the following abstract error estimate for the pressure recovery scheme.

Theorem 6.6.4. Let v € ® N H?T(Q), with v € (1/2,1] and ¢y, € M, be the solutions of
problems (6.2.3) and (6.4.1), respectively. Moreover, let (w,p) € HX Q and (wy,pn) € U X Q)
be the solutions of problems (6.6.7) and (6.6.12). Then, there exists a positive constant C,
independent of h, such that

O, v
Ip—pallos < ¢ int llp—anllon+ sup 12120
vhe;g)h ‘Vh‘l,h
Vi

+ |y — ¢h|2,h>, (6.6.14)

where O(1, ) is the consistency error defined in (6.6.13).

Proof. Adding and subtracting adequate terms in (6.6.12), for each v;, € U, we have

an(Wi, vi) = Fn(¥n, £) (Vi) = ba(Vh, pr)
= Fu(n, £)(vi) = Fr(, £)(vi) + Fn(¥, £) (Vi) — bn(Vi, p) + On(Vi, D — Dn)

= (Fn(@n, £) (Vi) = Fu(, £)(va)) + O, Vi) + bp(Va, p — pn)-
(6.6.15)
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Taking v, = wy, in (6.6.15), then by using the fact that by (wp, qn) = bp(Wr,pr) =0 Vg, € Qp,
the continuity of by(-,-) and Lemma 6.6.2, we get

O, v
il < (1= Valan -+ Ip — o + sup 1S, (6.6.16)

vreEUp |Vh|1,h
vp#0

By using again (6.6.15) and the linearity of by(-,-), for all ¢, € Q) we have

bh(Vi, qn — Pr) = bu(Vi, @ — P) + bp (V. D — Pa)
= bn(Vi, qn — p) + an(Wn, Vi) = (Fa(¥n, £)(vi) — Fu(, £)(vi)) — O, vi).

Thus, by using the two last estimate above, Lemma 6.6.2, the inf-sup condition in Lemma 6.6.3,

we obtain
O, v
Bllan — pulloga < C<||p — qnllo + |Walin + sup 1O( h)‘)
vhEUp ’Vhyl,h
Vi
The desired result follows from the triangle inequality, the above estimate and (6.6.16). O

Lemma 6.6.3. Let ¢ € PNH>(Q) be the solution of problem (6.2.3). Then, for p € QNH7(Q)
there exists a positive constant C, independent of h, such that

On(Y, vi)| < CR(|Iplly.o + [[¥llzrq.0 + Iflloe) Vel Vv € Up.

Proof. By using the definition of the consistency term ©(¢),-) (cf. (6.6.13)), the weak conti-
nuity of the discrete function of the Crouzeix-Raviart space on edges, and employing standard
arguments as [164, Theorem 13|, together with the real method of interpolation, we can obtain
the required result. O

Finally, the next result provides the rate of convergence for our pressure VE scheme.

Theorem 6.6.5. Under same assumptions of Theorem 6.6.4, for p € Q@ NHY(Q), there exists
C > 0, independent of h, such that

P = pullog < CAY(llplly.a + [¥ll2y.0 + [[fllo.0)-

Proof. The proof follows from (6.6.14), taking g, = II%p in Theorem 6.6.4, Lemma 6.6.3 and
Theorem 6.5.2.
O

Remark 6.6.1. We recall that if we are interesting to approximate only the main unknown of
problem (6.2.3), we can consider the Morley-type VE introduced in [/}, Subsection 3.2/, avoiding
the construction of the Stokes complex sequence. Moreover, we are able to recover the velocity
and vorticity fields by using the postprocessing of subsections 6.6.1 and 6.6.2, and obtain the
theoretical analysis presented here. However, the pressure recovery would not be available. Thus,
we point out that the main advantage to use the Stokes complexr sequence associated to My, and
U}, is that we can additionally compute the pressure field from the discrete stream-function,
with optimal rate of convergence, making the suitable setting.
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6.7 Numerical results

In this section, we present four numerical experiments to test the practical performance of
the proposed VE discretization (6.4.1) and assess the theoretical predictions as estimated in
Sections 6.5 and 6.6. We first approximate the discrete stream-function ¢ by employing Morley-
type VE space (6.3.4), and then we recover the velocity and vorticity fields by employing
suitable projection operators. Further, we recover the pressure variable by solving a saddle
point problem, where the velocity space is in Stokes complex relationship with the stream-
function space (cf. Section 6.6.3). In each test, in order to solve the nonlinear system resulting
from (6.4.1), we apply the Newton method, with a fixed tolerance of Tol = 10~® and the initial
guess is given by ¢ = 0. We have tested the method by using different families of meshes such
as:

e 7,I: Square meshes;

e 7.2 Triangular meshes;

e 73: Sequence of CVT (Centroidal Voronoi Tessellation);
e 7% Trapezoidal meshes,

which are posted in Figure 6.1. We quantify the errors by employing the projection operators:
2., T1%., and 11%. The following formulas are used for the computation of experimental errors,
for all 7 € {0,1,2} and for each j € {0,1}:

&) = (D v~ R ?,K)l/Qv &(u):= (Y |u~TMcurl @Z’h’?,K)l/Q?

KeTy, KeTy

&) = (X o - eainlZne) s &) = (X Ip—miliin)

KeTy, KeTh

(6.7.1)

Furthermore, we let R;(x), where x € {u,v,w} and i € {0, 1,2}, denotes the experimental
rates of convergence of the approximate solutions in broken H2-, H!- and L2-norms.

LT~ T~ T~ T

D e D DN P Y e Y

Figure 6.1: Sample meshes. T;!, T2, T2 and 7} (from left to right).
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6.7.1 Test 1. Kovasznay flow

In this numerical test, we solve the Navier-Stokes problem (6.1.1) on the domain € :=
(—0.5,1.5) x (0,2). We take the load term f and boundary conditions in such a way that the
analytical solution is given by the Kovasznay solution:

(1 —exp(Ax) cos(2my) o 1 :
u(zr,y) = ( A exp(\z) sin(2ry) )’ Y(z,y) =y o exp(Az) sin(27y),

27
_ A2 — 42
p(x,y) == —(1/2) exp(2Az) + p, W= <T

1/2
where A = Ze¢ _ <RTGQ + 47r2> with Re = v~! and p is a constant that is set to satisfy

) exp(Az) sin(27y),

2
zero mean condition. We have computed the discrete stream-function for different values of
viscosity coefficient, e.g., v = 1,0.01, and errors for the stream-function (cf. (6.7.1)) are posted
in Figure 6.2, and Figure 6.4, respectively. Further, by employing the formulas (6.6.2) and
(6.6.3), we have recovered discrete velocity and vorticity fields for v = 1,0.01. The error curves
of the velocity and vorticity are posted in Figure 6.3, and Figure 6.5, while the error curves
for the pressure are posted in Figure 6.6 for both values of v. Besides, for all the meshes the
maximum number of iterations that are required to achieve the tolerance in the Newton method
is 4 for v =1 and 6 for v = 0.01.

In Figure 6.7, we have posted the discrete stream-function and pressure fields for v = 1,
using the mesh 7', with h = 1/32.

100 F T T T TTHT T T T TTTT T TTHH{ 100 E T T T TTHHT T T TTHHT E 100 ; T T T TTHHT T T TTHHT ;

: [ = 4 107TE E

—~ —~ E D E —~ E E

\i/ 1071 - ; \?; 1072 / £ \% 1072 E

W 5 1 W F K/ 1 W 5 1

L A 1.02 il r 205 i | il

i : Il — ‘ -3 L .

* 1 T S I

10—2 R R N | 10—4 I Ll il ] 1074 ; e o e e 1 Hmm;
1072 1072 107t 10° 1072310-%3 10793 1072310-%3 10793
Maximum edge size h Maximum edge size h Maximum edge size h

(a) (b) (c)

-©- Square -©- Triangular mesh —— Voronoi -B- Trapezoidal mesh

Figure 6.2: Test 1: Convergence of the stream-function 1 in broken H2-, H- and L2-norms
with mesh refinement for different types of meshes, using v = 1.

6.7.2 Test 2. L-shaped domain

In this example, we would like to examine the rates of convergence of the discrete stream-
function, velocity and vorticity fields on a nonconvex L-shaped domain, where the exact solution
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100 T ]_00 F I E ]_00 F — T

i | 10! 4 I ]

Z 10t} Z 102} 1 2 0th ]

w B g 10w B 1

. 103 3 il e . |

072 Ll Ll L] 1074 i | il Ll 7‘ 1072 | Lol Lol
1073 1072 107t 10° 1072310713 10703 1072310713 10703
Maximum edge size h Maximum edge size h Maximum edge size h
(a) (b) (c)

-©- Square -©- Triangular mesh —— Voronoi -B- Trapezoidal mesh

Figure 6.3: Test 1: Convergence of the velocity field u in broken H!- and L?-norms, and vorticity
field w in L2-norm (from left to right) with mesh refinement for different types of meshes, using
v=1

100'4 T T T 100 F s 1 ] F T T T T T T

f |t E

100 1107t 4 i ]

= = i | = I 1

oS N i A | J 1072 E

1.96 B i

-2 L N [ i

097 10754 T ; — A2.04 |

i | 1

107066 | | | ] - S R 77— - 10_3 E e 1
107271072 107! 1072410713 10702 1072410713 10702
Maximum edge size h Maximum edge size h Maximum edge size h

(a) (b) ()

-©- Square -©- 'Triangular mesh —— Voronoi -B- Trapezoidal mesh

Figure 6.4: Test 1: Convergence of the stream-function in broken H?, H!- L2-norms with mesh
refinement for different types of meshes, using v = 0.01.

Y has less regularity. For the computational domain, we considered = (—1,1) x (=1,1)\
([0,1) x (=1,0]). The exact solution is given by 1(r, ) := r®3sin(%), where r := (22 4+ y?)'/%,
and 6 is the angle with the vertical axis. Since g—f is unbounded near the origin, then the
solution 1 has weak regularity near the origin. The rate of convergence of stream-function
velocity and vorticity solutions are posted in Table 6.1 for viscosity v = 1, and using the mesh

T2. From the posted results, we observed that the rates of convergence are in accordance
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100 F — T T A —T ‘: 100 F . 3 A 11 ] T T TTITT T T T
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Figure 6.5: Test 1: Convergence of the velocity field u in broken H'- and L?-norms, and vorticity
field w in L2-norm (from left to right) with mesh refinement for different types of meshes, using
v =0.01.

T T T T T TTTTT 100'6 r T T T 1T T T 111
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Figure 6.6: Test 1: Convergence of the pressure (p) in L?-norm with mesh refinement for
different types of meshes, using ¥ = 1 and v = 0.01. Left panel shows the errors curve of p for
v = 1, and right panel shows the errors curve of p for v = 0.01.

with the theoretical prediction for all the variables. Further, we have chosen exact pressure
as p := sin(x) — sin(y) — P, where P is a constant that is set to satisfy zero mean condition,
i.e., (p,1)o,.o = 0. The convergence behavior of the pressure field is posted in Table 6.2. It is
observed that initially the rate of convergence is slightly higher than the predicted order as in
Theorem 6.6.3. However, for finer mesh we observe expected order of convergence, i.e., O(h%?).
Further, we report that the presence of singularity of the stream-function at re-entrant corner
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Stream Fn
4.6e+00
4

) Discrete stream-function (b) Discrete pressure

Figure 6.7: Test 1: “Snapshots” of the approximate stream-function and pressure, using v = 1

and the mesh 7;}, h = 1/32.

affects the convergence order of pressure field as proven in Theorem 6.6.3. In this example, the

number of iterations that are required for the Newton method is 4.

h &) Re(d) &) Ri(¥) &) Ro(®) &1(w) Ri(u) E(w) Ro(w) &(w) Ro(w)

1/4 5.7631e-2 — 7.6316e-3 — 3.3797e-3 — 1.0336e-1 — 7.5336e-3 — 6.1773e-2
1/8 3.8328e-2 0.59 2.9766e-3 1.34 1.2923e-3 1.38 6.7243e-2 0.62 2.8964e-3 1.37 4.2442e-2 0.54
1/16 2.4854e-2 0.62 1.1634e-3 1.35 5.5365e-4 1.22 4.3160e-2 0.64 1.1236e-3 1.36 2.7923e-2 0.60
1/32 1.5907e-2 0.64 4.6577e-4 1.32 2.3946e-4 1.20 2.7492e-2 0.65 4.5976e-4 1.29 1.7999%e-2 0.63
1/64 1.0032e-2 0.66 1.9139e-4 1.28 1.0326e-4 1.21 1.7435e-2 0.66 1.8729e¢-4 1.29 1.1483e-2 0.65

Table 6.1: Test 2. Errors for the stream-function, and the post-processed velocity, vorticity

fields in broken H2-) H!- and L2-norms for v = 1, using the mesh 7,2.

h &(p) Rolp)
1/4 3.3613e-1 —
1/8 1.7549%-1 0.93
1/16 9.3685¢-2 0.90
1/32 5.2943e-2 0.82
1/64 3.1274e-2 0.75

Table 6.2: Test 2. Errors for the pressure variable in L?-norm for v = 1, using the mesh 7;2.

6.7.3 Test 3. The lid-driven cavity problem

In the third example, we assess the nature of the fluid for the lid-driven cavity flow. This
is a benchmark test to validate the numerical schemes for different values of viscosity v. The
computational domain is unit square with upper horizontal lid is moving with uniform velocity

= (1,0), and fixed boundary condition, i.e., u := (0,0) is applied to other static walls.
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In stream-function formulation, we have imposed the following Dirichlet boundary conditions:
Y =1, =0, and ¥, = 1 on moving lid, and ) = % = 0 on all other static walls. In Figure 6.8,
we posted the discrete stream-function and pressure field for v = 0.01 and using the mesh 7,3,
with h = 1/64. The small values of v exhibits singularities near x = 0, and x = 1 [102, 143,
which increases for smaller values of v. Such behaviors are noticed in other methods [102], and
persists also for finer grid. Further, we observed that the vortex center has moved towards
the direction of velocity for small values of v. For this numerical experiment, the number of

iterations that are required for the Newton method is 5.
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(a) Discrete stream-function (b) Discrete pressure

-1.2e+00

Figure 6.8: Test 3: “Snapshots” of the approximate stream-function and pressure for v = 0.01,
using the mesh 7,2, with h = 1/64.

6.7.4 Test 4. Performance of the scheme for small viscosity

In this example, we mainly focus to discuss the performance of the scheme for small values
of viscosity coefficients. We consider the exact stream-function, velocity and pressure solutions
as

22 2 2 _ 71— 2)*(2y — 6y° + 4y°) o33 1
¢<$,y) =Ty (l—ﬁ) (l_y) ) ll(l‘,y) T (_y2(1 o y)2(2$ _ 6372 —|—4!I?3)) ) p(m,y) =Ty _6'
The numerical approximations of the stream-function are computed by employing the
scheme (6.4.1), with the alternative load term given by (6.5.25) (cf. Remark 6.5.2). The
computational domain is considered as 2 := (0,1)?. Further, we discretize the domain with
square elements with different mesh sizes, and computed the errors for stream-function in bro-
ken H2-norm for different values of v, which are posted in Figure 6.9. We observed that the
errors are accurate when the parameter v within the range v € [1072,10°] and the errors in-
crease for v = 107%. We claim that these results are in accordance with the general behaviour
of the exactly divergence-free Galerkin schemes which are more robust with respect to small
viscosity parameters, see for instance [35] in the VEM approach. However, we would like to
point out that our scheme is not pressure robust. Finally, we report that the maximum number
of iterations that are required to achieve the tolerance in the Newton method is 7.
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6.7. Numerical results

&v)

<
<

1072 1072

Figure 6.9: Test 4. Errors of the stream-function & (v), using the VE scheme (6.4.1) with the
alternative load term (6.5.25), for different values of v and the mesh 7, .



Chapter 7

Conclusions and future work

7.1 Concluding remarks

In this thesis we have designed, analyzed and implemented several conforming and noncon-
forming virtual element methods for solving problems with application to the fluid mechanics
and large scale wind-driven ocean circulation, reformulated in terms of the stream-function of
the velocity field. More precisely, we have proposed C!-virtual element schemes to approximate
the quasi-geostrophic equations of the ocean, the Oseen problem, the nonlinear Navier-Stokes
equations and the coupled Boussinesq system under the stream-function approach.

Furthermore, by using an alternative discretization, we have developed a nonconforming
Morley-type virtual element scheme to solve the Navier-stream problem in stream-function
form.

The study has included analysis for discrete schemes, novel and rigorous analysis of conver-
gence in several norms of interest. Moreover, it includes numerical implementation to validate
the theoretical results and illustrate the behaviour of the numerical schemes have been reported.

The main conclusions of this thesis are:

1. In Chapter 2, we have proposed a C'-VEM of lowest order (i.e., k = 2) for the quasi-
geostrophic equations of the ocean in stream-function form. The C! virtual space and
the discrete scheme are built in a straightforward way due to the flexibility of the vir-
tual approach. Besides, the computational cost in terms of the degrees of freedom is
low; the scheme employ only 3 DoFs per vertex of the mesh. We have established the
well-posedness of the discrete problem by using the Banach fixed-point Theorem and as-
suming smallness of the data. Besides, under standard assumptions on the computational
domain, optimal error estimates in H?-norm for the stream-function have been provided.
Finally, several numerical experiments that illustrate the behavior of the virtual scheme
and confirm our theoretical results on different families of polygonal meshes have been
reported.

The results of this chapter are in article [136].

2. In Chapter 3, we have written a stream-function weak formulation for the Oseen problem,
which corresponds to a fourth-order PDEs. Thus, a conforming virtual element discretiza-
tion requires globally C'-continuity. In this chapter, we have exploited the possibility of
VEM to implement global discrete spaces of H? in a straightforward way even on general
polygonal meshes. Under a CLF-type condition we have established the well-posedness of
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the discrete problem and an error estimate in H?-norm is provided.Furthermore, strate-
gies for recovering additional variables of interest, such as velocity, vorticity, and pressure
fields, have been developed, along with the corresponding error analysis. Finally, we have
reported a set of numerical experiments, which allows us to assess the performance of the
proposed method.

The results contained in this work are in the book chapter [137].

In Chapter 4, we have designed VEMs of high-order for solving the steady Navier-
Stokes equations in stream-function form on polygonal meshes. A novel and rigorous error
analysis have been developed, allowing the derivation of optimal error bounds in several
important norms, under minimal regularity condition of the weak solution. In addition,
we have extend this scheme the Navier-Stokes system with boundary conditions on the
pressure. Algorithms to obtain high order approximations of several variables of interest
in fluid mechanics have also been provided. These procedures are based on adequate
postprocessing of the discrete stream function and allow to derive optimal error estimates.
Moreover, we have reported several benchmark numerical experiments illustrating the
behaviour and highlighting salient features of the present stream virtual element schemes.
We have included the approximation of the Kovasznay and lid-driven cavity solutions
on general polygonal meshes and using small values of the viscosity v. Additionally,
in Test 4.7.3, we investigated the performance of our VEMs, considering a hydrostatic
fluid problem. We noted that the outcomes achieved in this study are in agreement
with Galerkin methods that maintain the divergence-free property, where the partial
separation of velocity and pressure errors positively impacts the velocity calculations. In
addition, we have reported a numerical example with less regularity, which validates our
new theoretical findings in Theorem 4.4.3.

The results of this chapter are in the following submitted article [138].

In Chapter 5, we have designed and analyzed a high order fully-discrete virtual element
for the nonsteady Boussinesq system in terms of the stream-function and temperature
variables. We combined the C'- and C°-conforming virtual element approaches with
backward Euler schemes and proposed a fully-coupled formulation which is implicit in
the nonlinear terms. By using fixed-point arguments we proved the existence of discrete
solutions and, under a small time step condition, we have shown uniqueness of such so-
lutions. The ensuing numerical method is unconditionally stable. Error estimates in
L?(H?) N L*°(H') and L*(H') N L>°(L?) are provided for the stream-function and tem-
perature, respectively. A set of benchmark numerical experiments have been reported,
illustrating the good performance of the method and the theoretical rates of convergence.
In particular, we have included the benchmark natural convection test, and it can be seen
that the results show good agreement with the results presented in the existing literature.

The results contained in this chapter gave rise to the article [40].

In Chapter 6, we have developed a Stokes complex sequence associate to the Morley-
and Crouzeix-Raviart-type VE spaces enabling not only the approximation of the stream-
function but also the pressure reconstruction of the stationary Navier-Stokes equation
in stream-function formulation on simply connected polygonal domains (not necessarily
convex). Based on the ideas presented in [107, 75], a new enriching operator has been con-
structed from the sum space ® 4+ M, to the conforming counterpart of the nonconforming
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Morley space Mj,. Then, by using this operator and its approximation properties, we have
provided novel discrete Sobolev embeddings for the sum space ® + M. With the above
tools and the classical Banach fixed-point Theorem, the well-posedness of the discrete
problem has been established. In addition, by employing this enriching operator a rigor-
ous error analysis to obtain optimal error bounds in broken H?-, H'- and L2-seminorms,
under minimal regularity conditions on the weak stream-function solution have been de-
veloped. Procedures to compute additional fields of physical interest, such as the velocity,
vorticity and pressure have been proposed. More precisely, by employing suitable pro-
jection operators, we have computed the velocity and vorticity fields via postprocessing
formulas of the discrete stream-function. However, we emphasize that we cannot recover
the pressure variable directly from the discrete stream-function. So, we have developed a
new pressure recovery algorithm by employing the Stokes complex relation of the Morley-
and the Crouzeix-Raviart VE spaces, allowing the derivation of optimal error estimates
in L2-norm.

The results developed in this chapter mark a noteworthy step in furthering the progress
of design and analysis of new schemes based on the fully nonconforming Morley-type
VEM for solving fourth-order problems in more complicated scenarios, such as, nonlinear
coupled and/or time dependent systems present in the fluid and solid mechanics, and in
large scale wind-driven ocean circulation. In particular, we note that the discrete Sobolev
embedding (c¢f. Theorem 6.4.1) can be used to provided a well-posedness analysis for
thermal convection problems in stream-function—temperature form, the von Karméan plate
system and the quasi-geostrophic equations of the ocean, among others.

The results contained in this chapter are in the article [5].

In general, it observed that the present stream-function approach provides an attractive
and competitive alternative to solve two dimensional fluid flow problems; we eliminated the
vector velocity field and fluid pressure from the weak formulation. Thus, there is only a scalar
unknown and the approach leads to a smaller system compared with the classical velocity-
pressure formulation. In addition, the incompressibility constraint is automatically satisfied,
and the formulation avoids the difficulties related with the boundary values for the vorticity
field (which is presented in the stream-function—vorticity form).

In addition, from the numerical experiments (see for instance, the tests reported in Subsec-
tions 4.7.2, 4.7.4, 5.6.2 and 6.7.4), it can observed numerically that our VE schemes presents
certain robustness with respect to small diffusion parameters. Moreover from test 4.7.3 the
C'-VEM yields an hydrostatic velocity solution to the no flow problem for the Navier-Stokes
equations; this good behaviour can be attributed to the fact that the incompressibility condition
is satisfied automatically, a scenario in which the partial decoupling of the velocity and pressure
errors leads a positive effect on the velocity computation. Furthermore, we observed that the
resulting trilinear forms (continuous and discrete) in the momentum equation are naturally
skew-symmetric, allowing more direct stability and convergence arguments. The advantages
described above come at the price of a scheme without velocity and pressure fields, which
need to be recovered. However for the stationary cases, if the primitive fields (velocity and
pressure) are required, we have proposed algorithms to recover these variables. Additionally,
we computed the intrinsic vorticity variable. Other potential drawbacks are a larger condition
number due to the higher order derivatives involved, and a more complex extension to the three
dimensional case.
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Finally, it observed that the C'-VEMs approach employed in this study provides an attrac-
tive and competitive alternative to solve fourth-order PDEs that involve the stream-function
formulation in the context of fluid flow problems, by employing a low number of degrees of free-
dom. For instance, in the lowest order case k = 2, the total degrees of freedom used were 3Ny,
where N, denotes the number of vertices in the polygonal mesh and for the case & = 3, the total
of degrees of freedom employed were 3Ny, + N, where N, denotes the number of edges in the
polygonal mesh. Moreover, from the analysis provided in Section 4.4.2 (see also Theorem 4.4.3),
we observed that the C1-VE of lowest order needs the slightest regularity requirement for the
weak stream-function to establish optimal error estimates, even for the nonlinear Navier-Stokes
problem in stream-function form, compared with the classical C'-FEMs (cf. Table 1.1).

7.2 Future work

In this section we propose different challenging topics which (are currently and) can be
explored, building upon the theoretical and numerical paths developed in the thesis.

1. To extend the nonconforming VE scheme presented in Chapter 6 to the steady Boussi-
nesq equations with temperature-dependent parameters, formulated in terms of the stream-
function and temperature fields. This system is an extension of the classical Boussinesq
model. In addition to the standard nonlinear coupling through the buoyancy term and
the convective heat transfer, the system has an additional nonlinearity due to the in-
troduction of temperature-dependent viscosity and thermal conductivity, which makes
the problem even more challenging. In particular, we are interested in designing and
analyzing new VEMs for solving this problem by coupling the Morley-type VE scheme
developed in Chapter 6 and the nonconforming VEMs approach presented in [14, 65].

2. To develop a C'-VEM on curved domains with applications to fluid mechanics problems
in stream-function formulation. We observe that the special construction of the VEM
avoids the explicit expression of the basis functions and allows the direct definition of the
physical space (no reference element is employed), even on elements that are curved. In
particular, we are interesting in:

e to design a C'-VEM of high order k > 2 for solving two dimensional fourth-order
problems with curved edges;

e to construct a suitable interpolant in the virtual element space;

e to provide a rigorous analysis of stability and optimal error estimates;

e to delivery numerical implementation and applications to fluid flow problems. For
instance, to solve the Stokes and Navier-Stokes equations in stream-function form.

These topics above are currently under investigation.

3. To derive a posteriori error estimators for the subjects studied in Chapters 4 and 6. We
plan to extend the results presented in |75, 67| to develop reliable and efficient residual-
based a posteriori error estimators for the C''-conforming and Morley-type VEMs designed
in these chapters to the nonlinear Navier-Stokes problem in stream-function form.
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4. To study of the challenging three-dimensional case of the stream-function formulation
by using conforming and/or nonconforming approaches. We are interested in carrying
out the three-dimensional case by exploiting the VEM framework. It is important to
note that in this case, the situation is more complicated. The stream-function is now
a vector function (also referred to as a vector potential). Additionally, challenges arise
due to factors such as the geometry, the “gauge condition” (it is required that the vector
potential be also divergence-free), and the boundary conditions associated with the vector
potential. We plan to study this topic by exploiting conforming and/or nonconforming
approaches.



Bibliography

1]

2]

3]

[4]

[5]

[6]
7]

8]

9]

[10]

[11]

[12]

D. ADpAK, V. ANAYA, M. BENDAHMANE AND D. MoRrA, Conforming and nonconforming virtual

element methods for fourth order nonlocal reaction diffusion equation, Math. Models Methods
Appl. Sci., 33(10) (2023), pp. 2035-2083.

D. ApAk AND G. MANzZINI, The mnonconforming wvirtual element method for Oseen’s
equation using a stream-function formulation, ESAIM Math. Model. Numer. Anal., DOI:
https://doi.org/10.1051 /m2an /2023075, in press (2023).

D. ApAK, D. MORA, S. NATARAJAN AND A. SILGADO, A virtual element discretization for the

time dependent Navier-Stokes equations in stream-function formulation, ESAIM Math. Model.
Numer. Anal., 55(5) (2021), pp. 2535-2566.

D. Apak, D. MORA AND A. SILGADO, A Morley-type virtual element approzimation for a wind-
driven ocean circulation model on polygonal meshes, J. Comput. Appl. Math., 425 (2023), Article
115026.

D. Apak, D. MORA AND A. SILGADO, The Morley-type virtual element method for the Navier-
Stokes equations in stream-function form, Comput. Methods Appl. Mech. Engrg., 419 (2024),
Paper No. 116573.

R.A. Apams AND J.J.F. FOURNIER, Sobolev Spaces, 2nd ed., Academic Press, Amsterdam, 2003.

B. AaMAD, A. ALsaepi, F. BrRezzi, L.D. MARINI AND A. RUSSO, Fquivalent projectors for
virtual element methods, Comput. Math. Appl., 66 (2013), pp. 376-391.

J. AgHILT AND D. D1 PIETRO, An advection-robust hybrid high-order method for the Oseen
problem, J. Sci. Comput., 77 (2018), pp. 1310-1338.

R. Acrouwm, C. BERNARDI AND J. SATOURI, Spectral discretization of the time-dependent
Navier-Stokes problem coupled with the heat equation, Appl. Math. Comput., 268 (2015), pp.
59-82.

I. AL BavusHi, W. JIANG, G. TSOGTGEREL AND T.Y. KM, A posteriori analysis of a B-spline

based finite-element method for the stationary quasi-geostrophic equations of the ocean, Comput.
Methods Appl. Mech. Engrg., 371 (2020), 113317.

R. AvpBAissy, F. HECHT, G. MANSOUR AND T. SAYAH, A full discretisation of the time-
dependent Boussinesq (buoyancy) model with nonlinear viscosity, Calcolo, 55(4) (2018), Paper
No. 44, 49.

V. ANAYA, M. BENDAHMANE, D. MORA AND R. RU1Z-BAIER, On a vorticity-based formulation
for reaction-diffusion- Brinkman systems, Netw. Heterog. Media, 13(1) (2018), pp. 69-94.

171



172 Bibliography

[13] V. ANAYA, A. BOUHARGUANE, D. Mora, C. REALES, R. Ruiz-BAIER, N. SELOULA AND H.

TORRES, Analysis and approzimation of a vorticity-velocity-pressure formulation for the Oseen
equations, J. Sci. Comput., 88(3) (2019), pp. 1577-1606.

[14] V. ANAYA, G. N. GaTIiCA, D. MORA AND R. RUIZ-BAIER, An augmented velocity—vorticity—
pressure formulation for the Brinkman equations, Int. J. Numer. Methods Fluids, 79 (2015) pp.
109-137.

[15] V. ANAvA, D. MoRrA, C. REALES AND R. Ruiz-BAIER, Vorticity-pressure formulations for the
Brinkman-Darcy coupled problem, Numer. Methods Partial Differential Equations, 35(2) (2019),
pp- 528-544.

[16] P.F. ANTONIETTI, L. BEIRAO DA VEIGA AND G. MANZINI, The Virtual Element Method and
its Applications, SEMA SIMAT Springer Series, Springer, Cham, Vol. 31, 2022.

[17] P.F. ANTONIETTI, L. BEIRAO DA VEIGA, D. MORA AND M. VERANI, A stream virtual element
formulation of the Stokes problem on polygonal meshes, STAM J. Numer. Anal., 52 (2014), pp.
386-404.

[18] P.F. ANTONIETTI, L. BEIRAO DA VEIGA, S. SCACCHI AND M. VERANI, A C! virtual element
method for the Cahn—Hilliard equation with polygonal meshes, SIAM J. Numer. Anal., 54 (2016),
pp- 36-56.

[19] P.F. ANTONIETTI, G. MANZINI, S. SCACCHI AND M. VERANI, A review on arbitrarily requ-

lar conforming virtual element methods for second- and higher-order elliptic partial differential
equations. Math. Models Methods Appl. Sci. 31(14) (2021), pp. 2825-2853.

[20] P. F. ANTONIETTI, G. MANZINI, AND M. VERANI, The fully nonconforming virtual element
method for biharmonic problems, Math. Models Methods Appl. Sci., 28(2) (2018), pp. 387-407.

[21] P.F. AntonNiETTI, G. VAccAa AND M. VERANI, Virtual element method for the
Navier—Stokes equation coupled with the heat equation, IMA J. Numer. Anal., (2021), DOL:
https://doi.org/10.1093 /imanum /drac072.

[22] B. Ayuso DE Dios, K. LIPNIKOV AND G. MANZINI, The nonconforming virtual element method.
ESAIM Math. Model. Numer. Anal., 50(3) (2016), pp. 879-904.

[23] T.P. BARRIOS, J.M. CASCON AND M. GONZALEZ, Augmented mized finite element method

for the Oseen problem: a priori and a posteriori error analyses, Comput. Methods Appl. Mech.
Engrg., 313 (2017), pp. 216-238.

[24] T.P. BArr1OS, J.M. CASCON AND M. GONZALEZ, On an adaptive stabilized mized finite element
method for the Oseen problem with mized boundary conditions, Comput. Methods Appl. Mech.
Engrg., 365 (2020), 113007, 21 pp.

[25] G.R. BARRENECHEA AND A. WACHTEL, Stabilised finite element methods for the Oseen problem
on anisotropic quadrilateral meshes, ESAIM Math. Model. Numer. Anal., 52 (2018), pp. 99-122.

[26] A. BEHZADAN AND M. HowLsT, Multiplication in Sobolev spaces, revisited, Ark. Mat., 59(2)
(2021), pp. 275-306.

[27] L. BEIRAO DA VEIGA, F. BREZZI, A. CANGIANI, G. MANZINI, L.D. MARINI AND A. RUSSO,
Basic principles of virtual element methods, Math. Models Methods Appl. Sci., 23 (2013), pp.
199-214.



Bibliography 173

[28]

[38]

[39]

[40]

[41]

[42]

[43]

[44]

L. BEIRAO DA VEIGA, F. BREzzI, L..D. MARINI AND A. RuUsso, Virtual element method for

general second-order elliptic problems on polygonal meshes, Math. Models Methods Appl. Sci.,
26(4) (2016), pp. 729-750.

L. BEIRAO DA VEIGA, F. Brezzl, L.D. MARINI AND A. Russo, H(div) and H(curl)-
conforming virtual element methods, Numer. Math., 133(2) (2016), pp. 303-332.

L. BEIRAO DA VEIGA, F. Dasst AND A. Russo, A C! wirtual element method on polyhedral
meshes, Comput. Math. Appl., 79(7) (2020), pp. 1936-1955.

L. BEIRAO DA VEIGA, F. Dasst AND G. VAccA, The Stokes complex for virtual elements in
three dimensions, Math. Models Methods Appl. Sci., 30(3) (2020), pp. 477-512.

L. BEIRAO DA VEIGA AND A. ERN, Preface Special issue — Polyhedral discretization for PDE,
ESAIM Math. Model. Numer. Anal., 50(3) (2016), pp. 633-634.

L. BEIRAO DA VEIGA, C. LOVADINA AND A. RuUssO, Stability analysis for the virtual element
method, Math. Models Methods Appl. Sci., 27(13) (2017), pp. 2557-2594.

L. BEIRAO DA VEIGA, C. LOVADINA AND G. VACCA, Divergence free virtual elements for the
Stokes problem on polygonal meshes, ESAIM Math. Model. Numer. Anal., 51 (2017), pp. 509-535.

L. BEIRAO DA VEIGA, C. LOVADINA AND G. VAccA, Virtual elements for the Navier-Stokes
problem on polygonal meshes, STAM J. Numer. Anal., 56(3) (2018), pp. 1210-1242.

L. BEIRAO DA VEIGA AND G. MANZINI, A virtual element method with arbitrary regularity, IMA
J. Numer. Anal., 34 (2014), pp. 759-781.

L. BEIRAO DA VEIGA AND G. MANZINI, Residual a posteriori error estimation for the wvirtual
element methods for elliptic problems, ESAIM Math. Model. Numer. Anal., 49(2) (2015), pp.
577-599.

L. BEIRAO DA VEIGA, D. MORA AND G. RIVERA, Virtual elements for a shear-deflection for-
mulation of Reissner-Mindlin plates, Math. Comp., 88, (2019), pp. 149-178.

L. BEIRAO DA VEIGA, D. MoORA, G. RIVERA AND R. RODRIGUEZ, A wvirtual element method
for the acoustic vibration problem, Numer. Math., 136(3) (2017), pp. 725-763.

L. BEIRAO DA VEIGA, D. MORA AND A. SILGADO, A fully-discrete virtual element method for
the nonstationary Boussinesq equations in stream-function form, Comput. Methods Appl. Mech.
Engrg., 408 (2023), Paper No. 115947.

L. BEIRAO DA VEIGA, D. MORA AND G. VAccA, The Stokes complex for virtual elements with
application to Navier-Stokes flows, J. Sci. Comput., 81(2) (2019), pp. 990-1018.

L. BEIRAO DA VEIGA, A. PICHLER AND G. VAccA, A virtual element method for the miscible

displacement of incompressible fluids in porous media, Comput. Methods Appl. Mech. Engrg., 375
(2021), Paper No. 113649, 35 pp.

P.L. BETTs AND V. HAROUTUNIAN, A stream function finite element solution for two-

dimensional natural convection with accurate representation of Nusselt number variations near
a corner, Int. J. Numer. Methods Fluids., 3 (1983), pp. 605-622.

C. BERNARDI AND M. AMARA, Convergence of a finite element discretization of the Navier—
Stokes equations in vorticity and stream function formulation, ESAIM Math. Model. Numer. Anal.,

33(5) (1999), pp. 1033-1056.



174 Bibliography

[45] C. BERNARDI, T. CHACON REBOLLO, D. YAKOUBI, Finite element discretization of the Stokes
and Navier-Stokes equations with boundary conditions on the pressure, SIAM J. Numer. Anal., 53
3 (2015), pp. 1256-1279.

[46] C. BERNARDI AND N. CHORFI, Spectral discretization of the vorticity, velocity, and pressure
formulation of the Stokes problem, STAM J. Numer. Anal., 44 (2006), pp. 826-850.

[47] C. BERNARDI, B. METIVET AND B. PERNAUD-THOMAS, Couplage des équations de Navier-
Stokes et de la chaleur: le modéle et son approximation par éléments finis. ESAIM Math. Model.
Numer. Anal., 29(7) (1995), pp. 871-921.

[48] S. BERTOLUZZA, V. CHABANNES, C. PRUD’HOMME AND M. S7zOPOS, Boundary conditions in-

volving pressure for the Stokes problem and applications in computational hemodynamics, Comput.
Methods Appl. Mech. Engrg. 322 (2017), pp. 55-80.

[49] H. BLum AND R. RANNACHER, On the boundary value problem of the biharmonic operator on
domains with angular corners, Math. Methods Appl. Sci., 2(4) (1980), pp. 556-581.

[50] J. BoLAND AND W. LAYTON, An analysis of the finite element method for natural convection
problems, Numer. Methods Partial Differential Equations, 2 (1990), pp. 115-126.

[51] O. BoTELLA AND R. PEYRET, Benchmark spectral results on the lid-driven cavity flow, Comput.
and Fluids, 27 (1998), pp. 421-433.

[52] M. BrAaACK, E. BURMAN, V. JOHN AND G. LUBE, Stabilized finite element methods for the
generalized Oseen problem, Comput. Methods Appl. Mech. Engrg., 196 (2007), pp. 853-866.

[53] S.C. BRENNER, S. Gu, T. GubI AND L.-Y. SUNG, A quadratic C° interior penalty method for

linear fourth order boundary value problems with boundary conditions of the Cahn-Hilliard type,
SIAM J. Numer. Anal., 50(4) (2012), pp. 2088-2110.

[54] S.C. BRENNER AND R.L. ScorT, The Mathematical Theory of Finite Element Methods, Springer,
New York, 2008.

[65] S.C. BRENNER AND L.Y. SUNG, Virtual element methods on meshes with small edges or faces,
Math. Models Methods Appl. Sci., 28(7) (2018), pp. 1291-1336.

[56] S.C. BRENNER, L.-Y. SUNG AND Z. TAN, A C! virtual element method for an elliptic distributed
optimal control problem with pointwise state constraints, Math. Models Methods Appl. Sci., 31(14)
(2021), pp. 2887-2906.

[57] S.C. BRENNER, P. MONK AND J. SuN, C? interior penalty Galerkin method for biharmonic
eigenvalue problems, in Spectral and High Order Methods for Partial Differential Equations. Lect.
Notes Comput. Sci. Eng., 106 (2015), pp. 3-15.

[58] F. BrEZZI AND L.D. MARINI, Virtual elements for plate bending problems, Comput. Methods
Appl. Mech. Engrg., 253 (2013), pp. 455-462.

[59] E. CACERES AND G.N. GATICA, A mized virtual element method for the pseudostress-velocity
formulation of the Stokes problem, IMA J. Numer. Anal., 37 (2017), pp. 296-331.

[60] E. CACERES, G.N. GATICA AND F. SEQUEIRA, A mized virtual element method for the Brinkman
problem, Math. Models Methods Appl. Sci., 27 (2017), pp. 707-743.

[61] Z. Ca1 AND B. CHEN, Least-squares method for the Oseen equation, Numer. Methods Partial
Differential Equations, 32 (2016), pp. 1289-1303.



Bibliography 175

[62]

[63]

[64]

[65]

[66]

[67]

|68]

[69]

[70]

[71]

[72]

73]

[74]

[75]

[76]

[77]

[78]

A. CaNGIANI, E.H. GEORGOULIS AND P. HOUSTON, hp-version discontinuous Galerkin methods
on polygonal and polyhedral meshes, Math. Models Methods Appl. Sci., 24(10) (2014), pp. 2009
2041.

A. CancianNi, E.H. GEorcouLis, T. PRYER AND O.J. SUTTON, A posteriori error estimates
for the virtual element method, Numer. Math., 137(4) (2017), pp. 857-893.

A. CANGIANI, V. GYRYA AND G. MANZINI, The nonconforming virtual element method for the
Stokes equations, STAM J. Numer. Anal., 54(6) (2016), pp. 3411-3435.

A. CANGIANI, G. MANZINI AND O.J. SUTTON, Conforming and nonconforming virtual element
methods for elliptic problems, IMA J. Numer. Anal., 37 (2017), pp. 1317-1354.

C. CARSTENSEN, R. KHOT AND A.K. PANI, A priori and a posteriori error analysis of the
lowest-order NCVEM for second-order linear indefinite elliptic problems, Numer. Math., 151(3)
(2022), pp. 551-600.

C. CARSTENSEN, R. KHOT AND A.K. PaNI, Nonconforming virtual elements for the biharmonic
equation with Morley degrees of freedom on polygonal meshes, SITAM J. Numer. Anal., 61(5) (2023),
pp- 2460-2484.

C. CARSTENSEN, G. MALLIK AND N. NATARAJ, Nonconforming finite element discretization for
semilinear problems with trilinear nonlinearity, IMA J. Numer. Anal., 41 (2021), pp. 164-205.

J.M. CAscON, G.C. GARCIA AND R. RODRIGUEZ, A priori and a posteriori error analysis for

a large-scale ocean circulation finite element model, Comput. Methods Appl. Mech. Engrg., 192
(2003), pp. 5305-5327.

D. CASTANON QUIROZ AND D.A. D1 PIETRO, A hybrid high-order method for the incompress-

ible Navier-Stokes problem robust for large irrotational body forces, Comput. Math. Appl., 79(9)
(2020), pp. 2655-2677.

M. Cayco AND R.A. NICOLAIDES, Finite element technique for optimal pressure recovery from
stream function formulation of viscous flows, Math. Comp., 46(174) (1986), pp. 371-377.

M. CAayCco AND R.A. NICOLAIDES, Analysis of nonconforming stream function and pressure finite
element spaces for the Navier-Stokes equations, Comput. Math. Appl., 18(8) (1989), pp. 745-760.

C.L. CHANG AND S.-Y. YANG, Analysis of the [L?, L? L?] least-squares finite element method
for incompressible Oseen-type problems. Int. J. Numer. Anal. Model., 4(3-4) (2007), pp 402-424.

L. CHEN AND J. HUANG, Some error analysis on virtual element methods, Calcolo, 55(1) (2018),
pp- 923.

M. CHEN, J. HUANG AND S. LIN, A posteriori error estimation for a C' virtual element method
of Kirchhoff plates, Comput. Math. Appl., 120 (2022), 132-150.

A. CHERNOV, C. MARCATI AND L. MASCOTTO, p- and hp- virtual elements for the Stokes
problem, Adv. Comput. Math., 47 (2021), Art. 24, 31 pp.

C. CHINOSI AND L.D. MARINI, Virtual element method for fourth order problems: L?-estimates,
Comput. Math. Appl., 72(8) (2016), pp. 1959-1967.

A. CeEsMELIOGLU, B. COCKBURN, N.C. NGUYEN, AND J. PERAIRE, Analysis of HDG methods
for Oseen equations. J. Sci. Comput., 55(2) (2013), pp. 392-431.



176

Bibliography

[79]
[80]

[81]

[82]

[83]

[86]

[87]

[88]

[89]

[90]

[91]

[92]

[93]

[94]

[95]

[96]

P.G. CiArRLET, The Finite Flement Method for Elliptic Problems, STAM, 2002.

B. CockBURN, G. Fu AND W. QIuU, A note on the devising of superconvergent HDG methods
for Stokes flow by M-decompositions, IMA J. Numer. Anal., 37(2) (2017), pp. 730-749.

A. DEDNER AND A. HODSON, Robust nonconforming virtual element methods for general fourth—
order problems with varying coefficients, IMA J. Numer. Anal., 42(2) (2022), pp. 1364-1399.

H. DALLMANN AND D. ARNDT, Stabilized finite element methods for the Oberbeck-Boussinesq
model, J. Sci. Comput., 69(1), (2016), pp. 244-273.

M. DEHCHAN, Z. GHARIBI AND R. RUIZ-BAIER, Optimal error estimates of coupled and

divergence-free virtual element methods for the Poisson—Nernst—Planck/Navier—Stokes equations,
J. Sci. Comput., 94(3) (2023), Paper No. 72, 50 pp.

F. Dasst AND G. VACCA, Bricks for the mized high-order virtual element method: Projectors and
differential operators, Appl. Numer. Math., 155, (2020), pp. 140-159.

J. DE FrUTOS, B. GARCIA-ARCHILLA AND JULIA NOVO, Grad-div stabilization for the time-

dependent Boussinesq equations with inf-sup stable finite elements, Appl. Math. Comput., 349
(2019), pp. 281-291.

D.A. D1 PIETRO AND A. ERN, A hybrid high-order locking-free method for linear elasticity on
general meshes, Comput. Methods Appl. Mech. Engrg., 283 (2015), pp. 1-21.

D.A. D1 PIETRO AND S. KRELL, A hybrid high-order method for the steady incompressible Navier-
Stokes problem, J. Sci. Comput., 74(3) (2018), pp. 1677-1705.

Z. DONG AND A. ERN, Hybrid high-order and weak Galerkin methods for the biharmonic problem,
STAM J. Numer. Anal., 60(5) (2022), pp. 2626—2656.

A. ERN, Vorticity-velocity formulation of the Stokes problem with variable density and viscosity,
Math. Models Methods Appl. Sci., 8(2), (1998), pp. 203-218.

F. FAIRAG, A two-level finite-element discretization of the stream function form of the Navier-
Stokes equations, Comput. Math. Appl., 36 (1998), pp. 117-127.

F. FAIRAG, Numerical computations of viscous, incompressible flow problems using a two-level
finite element method, STAM J. Sci. Comput., 24 (2003), pp. 1919-1929.

D. FisHeELov, M. BEN-ARTZI AND J.-P. CROISILLE, Recent developments in the pure stream-
function formulation of the Navier—Stokes system, J. Sci. Comput., 45 (2010), pp. 238-258.

G. FIX, Finite element models for ocean circulation problems, SIAM J. Appl. Math., 29 (1975),
pp. 371-387.

S. Franz, K. HOHNE AND M. GUNAR, Grad-div stabilized discretizations on S-type meshes for
the Oseen problem, IMA J. Numer. Anal., 38 (2018), pp. 299-329.

E.L. FOSTER, T. ILIESCU AND Z. WANG, A finite element discretization of the stream function

formulation of the stationary quasi-geostrophic equations of the ocean, Comput. Methods Appl.
Mech. Engrg., 261/262(2) (2013), pp. 105-117.

E.L. FosTERr, T. ILIESCU AND D. WELLS, A conforming finite element discretization of the
streamfunction form of the unsteady quasi-geostrophic equations, Int. J. Numer. Anal. Model.,
13(6) (2016), pp. 951-968.



Bibliography 177

[97] D. FrRErRICHS AND C. MERDON, Divergence-preserving reconstructions on polygons and a really
pressure-robust virtual element method for the Stokes problem, IMA J. Numer. Anal., 42(1) (2022),
pp. 597-619.

[98] G.N. GATiCcA, M. MUNAR AND F. SEQUEIRA, A mized virtual element method for the Navier-
Stokes equations, Math. Models Methods Appl. Sci., 28(14) (2018), pp. 2719-2762.

[99] G.N. GATICA, M. MUNAR AND F. SEQUEIRA, A mized virtual element method for the Boussinesq
problem on polygonal meshes, J. Comput. Math., 39(3) (2021), pp. 392-427.

[100] G.N. GaTicA AND F. SEQUEIRA, An LP spaces-based mized virtual element method for the
two-dimensional Navier-Stokes equations, Math. Models Methods Appl. Sci., 31(14) (2021), pp.
2937-2977.

[101] E.H. GEORGOULIS AND P. HOUSTON, Discontinuous Galerkin methods for the biharmonic prob-
lem, IMA J. Numer. Anal., 29(3) (2009), pp. 573-594.

[102] U. GHia, K.N. GHIA AND C.T. SHIN, High-Re solutions for incompressible flow using the
Navier-Stokes equation and a multigrid method. J. Comput. Phys., 48 (1982), pp. 387-411.

[103] V. GIrAULT AND P.A. RAVIART, Finite Element Methods for Navier-Stokes Equations, Springer-
Verlag, Berlin, 1986.

[104] R.J. GREATBATCH AND B.T. NADIGA, Four-gyre circulation in a barotropic model with double-
gyre wind forcing, J. Phys. Oceanogr., 30 (2000), pp. 1461-1471.

[105] Q. GUAN, Some estimates of virtual element methods for fourth order problems, Electronic Re-
search Archive, 29(6), (2021), pp. 4099-4118.

[106] D.B. HAIDVOGEL, A.R. ROBINSON AND E.E. SCHULMAN, The accuracy, efficiency, and sta-

bility of three numerical models with application to open ocean problems, J. Comput. Phys., 34
(1980), pp- 1-53.

[107] J. HuANG AND Y. YU, A medius error analysis for nonconforming virtual element methods for
Poisson and biharmonic equations, J. Comput. Appl. Math., 386 (2021), Paper No. 113229, 20

bp.

[108] X. Hu, L. Mu, AND X. YE, A weak Galerkin finite element method for the Navier—Stokes
equations, J. Comput. Appl. Math., 362 (2019), pp. 614-625.

[109] V. Jonn, A. LiNKE, C. MERDON, M. NEILAN AND L.G. REBHOLZ, On the divergence con-
straint in mized finite element methods for incompressible flows, SIAM Rev., 59(3) (2017), pp.
492-544.

[110] D. Kimv, T.Y. Kim, E.J. PARK AND D.W. SHIN, Error estimates of B-spline based finite-
element methods for the stationary quasi-geostrophic equations of the ocean, Comput. Methods
Appl. Mech. Engrg., 353 (2018), pp. 255-272.

[111] D. Kim, A.K. Pant AND E.J. PARK, Morley finite element methods for the stationary quasi-
geostrophic equation, Comput. Methods Appl. Mech. Engrg., 375 (2021), 113639, 21 pp.

[112] T.Y. KiM, E.J. PARK AND D.W. SHIN, A C°-discontinuous Galerkin method for the stationary
quasi-geostrophic equations of the ocean, Comput. Methods Appl. Mech. Engrg., 300 (2015), pp.
225-244.



178 Bibliography

[113] T.Y. Kim, T. ILiescu AND E. FRIED, B-spline based finite-element method for the stationary
quasi-geostrophic equations of the ocean, Comput. Methods Appl. Mech. Engrg., 286 (2015), pp.
168-191.

[114] K. KiRK AND S. RHEBERGEN, Analysis of a pressure-robust hybridized discontinuous Galerkin
method for the stationary Navier-Stokes equations, J. Sci. Comput., 81(2) (2019), 881-897.

[115] M.J. LAI AND P. WENSTON, Bivariate spline method for numerical solution of steady state

Navter-Stokes equations over polygons in stream function formulation, Numer. Methods Partial
Differential Equations, 16(2), (2000), pp. 147-183.

[116] M. L1, J. Zuao, C HuaNG AND S. CHEN, Conforming and nonconforming VEMs for the
fourth—order reaction—subdiffusion equation: a unified framework, IMA J. Numer. Anal., 42(3)
(2022), pp. 2238-2300.

[117] X. Liu, R. L1 AND Z. CHEN, A virtual element method for the coupled Stokes-Darcy problem
with the Beaver-Joseph-Saffman interface condition, Calcolo, 56(4), (2019), Art. 48, 28 pp.

[118] X. Liu AND Z. CHEN, The nonconforming virtual element method for the Navier-Stokes equa-
tions, Adv. Comput. Math., 45(1) (2019), pp. 51-74.

[119] X. Liu, R. L1 AND Y. NIE, A divergence-free reconstruction of the nonconforming virtual element
method for the Stokes problem, Comput. Methods Appl. Mech. Engrg., 372 (2020), Paper No.
113351, 21 pp.

[120] J.G. Liu, C. WANG AND H. JOHNSTON, A fourth order scheme for incompressible Boussinesq
equations, J. Sci. Comput., 18(2) (2003), pp. 253-285.

[121] S. A. Lorca AND J.L. BOLDRINI, The initial value problem for a generalized Boussinesq model.
Nonlinear Anal., 36(4) (1999) Ser. A: Theory Methods, pp. 457-480.

[122] C. LovADINA, D. MORA AND 1. VELASQUEZ, A wirtual element method for the von Kdrmdn
equations, ESAIM Math. Model. Numer. Anal., 55(2) (2021), pp. 533-560

[123] A. MAJDA, Introduction to PDEs and Waves for the Atmosphere and Ocean, American Mathe-
matical Society, New York, 2003.

[124] A. Maspa AND X. WANG, Nonlinear Dynamics and Statistical Theories for Basic Geophysical
Flows, Cambridge University Press, 2006.

[125] M.T. MANZARI, An explicit finite element algorithm for convective heat transfer problems, In-
ternat. J. Numer. Methods Heat Fluid Flow, 9 (1999), pp. 860-877.

[126] L. MaAscoTTO, I. PERUGIA AND A. PICHLER, Non-conforming harmonic virtual element
method: h- and p-versions, J. Sci. Comput., 77(3) (2018), pp. 1874-1908.

[127] L. MascorTOo, I. PERUGIA AND A. PICHLER, A nonconforming Trefftz virtual element method
for the Helmholtz problem. Math. Models Methods Appl. Sci. 29(9) (2019), pp. 1619-1656.

[128] N. MASSAROTTI, P. NITHIARASU AND O.C. ZIENKIEWICZ, Characteristic-Based-Split (CBS)
algorithm for incompressible flow problems with heat transfer, Internat. J. Numer. Methods Heat
Fluid Flow, 8 (1998), pp. 969-990.

[129] J. McWIiLLIAMS, Fundamentals of Geophysical Fluid Dynamics, Cambridge University Press,
2006.



Bibliography 179

[130] T.T. MEDJO, Numerical simulations of a two-layer quasi-geostrophic equation of the ocean, SITAM
J. Numer. Anal., 37 (2000), pp. 2005-2022.

[131] J. MENG, L. MAscoTTO AND L. BEIRAO DA VEIGA, Stability and interpolation properties for
Stokes-like virtual element spaces, J. Sci. Comput., 94(3) (2023), Paper No. 56, 23 pp.

[132] P.G. MYERS AND A.J. WEAVER, A diagnostic barotropic finite-element ocean circulation model,
J. Atmos. Ocean Technol. 12 (1995), pp. 511-526.

[133] D. MoraA, C. REALES AND A. SILGADO, A Cl-virtual element method of high order for the
Brinkman equations in stream function formulation with pressure recovery, IMA J. Numer. Anal.,
42(4) (2022), pp. 3632-3674.

[134] D. MoRA, G. RIVERA AND R. RODRIGUEZ, A virtual element method for the Steklov eigenvalue
problem, Math. Models Methods Appl. Sci., 25 (2015), pp. 1421-1445.

[135] D. MoRrA, G. RIVERA AND L. VELASQUEZ, A virtual element method for the vibration problem
of Kirchhoff plates, ESAIM Math. Model. Numer. Anal.; 52 (2018), pp. 1437-1456.

[136] D. MORA AND A. SILGADO, A C! virtual element method for the stationary quasi-geostrophic
equations of the ocean, Comput. Math. Appl., 116 (2022), pp. 212-228.

[137] D. MORA AND A. SILGADO, Virtual element methods for a stream-function formulation of the
Oseen equations, In: Antonietti, P.F., Beirdao da Veiga, L., Manzini, G. (eds), The Virtual Element
Method and its Applications. SEMA SIMAI Springer Series, vol 31, pp. 321-361, (2022). Springer,
Cham.

[138] D. MoORA AND A. SILGADO, Virtual elements for the Navier-Stokes system: stream-function
form and primitive variables recovery algorithms, submitted for publication (2023).

[139] D. Mora AND I. VELASQUEZ, Virtual elements for the transmission eigenvalue problem on
polytopal meshes, SIAM J. Sci. Comput., 43(4) (2021), A2425-A2447.

[140] H. MorimMoTO, Nonstationary Boussinesq equations, J. Fac. Sci. Univ. Tokyo Sect. IA Math.,
39(1), (1992), pp. 61-75.

[141] L.S.D. MORLEY, The triangular equilibrium element in the solution of plate bending problems,
Aero. Quart., 19 (1968), pp. 149-169.

[142] 1. MOZOLEVSKI AND E. SULL, A priori error analysis for the hp-version of the discontinuous
Galerkin finite element method for the biharmonic equation, Comput. Methods Appl. Math., 3(4)
(2003), pp. 596—607.

[143] I. MozOLEVSKI, E. SULI AND P.R. BOSING, Discontinuous Galerkin finite element approzi-
mation of the two-dimensional Navier-Stokes equations in stream-function formulation, Comm.

Numer. Methods Engrg., 23(6) (2007), pp. 447-459.

[144] R. OvAaRrzUA, T. QIN AND D. SCHOTZAU, An ezactly divergence-free finite element method for
a generalized Boussinesq problem, IMA J. Numer. Anal., 34(3) (2014), pp. 1104-1135.

[145] J. PEDLOSKY, Geophysical Fluid Dynamics, Springer, 1987.

[146] A. QUARTERONI AND A. VALLI, Numerical Aprozimation of the Partial Differential Equation,
Springer-Verlag Berlin Heidelberg, 1994.



180 Bibliography

[147] P. W. SCHROEDER AND G. LUBE Pressure-robust analysis of divergence-free and conforming
FEM for evolutionary incompressible Navier—Stokes flows, J. Numer. Math., 25(4) (2017), pp.
249-276.

[148] W.N.R. STEVENS, Finite element, stream function—vorticity solution of steady laminar natural
convection, Int. J. Numer. Methods Fluids, 2 (1982), pp. 349-366.

[149] A. TABARRAEI AND N. SUKUMAR, Conforming polygonal finite elements, Int. J. Numer. Meth-
ods Engrg., 61 (2004), pp. 2045-2066.

[150] M. TABATA AND D. TAGAMI, Error estimates of finite element methods for nonstationary ther-

mal convection problems with temperature-dependent coefficients, Numer. Math., 100(2) (2005),
pp- 351-372.

[151] A. TAGLIABUE, L. DEDE AND A. QUARTERONI, Isogeometric analysis and error estimates for
high order partial differential equations in fluid dynamics, Comput. & Fluids, 102 (2014), pp.
277-303.

[152] Z. T1AN AND Y. GE, A fourth-order compact finite difference scheme for the steady stream

function-vorticity formulation of the Nawvier-Stokes/Boussinesq equations, Internat. J. Numer.
Methods Fluids, 41(5) (2003), pp. 495-518.

[153] G. VAccA AND L. BEIRAO DA VEIGA, Virtual element methods for parabolic problems on polyg-
onal meshes, Numer. Methods Partial Differential Equations, 31(6) (2015), pp. 2110-2134.

[154] G. VaccaA, An H-conforming virtual element for Darcy and Brinkman equations, Math. Models
Methods Appl. Sci., 28 (2018), pp. 159-194.

[155] D. pE VAHL DAvIs, Natural convection of air in a square cavity: A benchmark solution, Internat.
J. Numer. Methods Fluids, 3 (1983), pp. 249-264.

[156] G.K. VALLIS, Atmosphere and Ocean Fluid Dynamics: Fundamentals and Large-Scale Circula-
tion, Cambridge University Press, 2006.

[157] N. VERMA AND S. KUMAR, Lowest order virtual element approzimations for transient Stokes
problem on polygonal meshes, Calcolo, 58(4) (2021), Paper No. 48, 35 pp.

[158] D.C. WaN, B.S.V. PAaTNAIK AND G.W. WEI, A new benchmark quality solution for the
buoyancy-driven cavity by discrete singular convolution, Numer. Heat Transfer, 40 (2001), pp.
199-228.

[159] F. WANG AND J. ZHAO, Conforming and nonconforming virtual element methods for a Kirchhoff
plate contact problem, IMA J. Numer. Anal., 41(2) (2021), pp. 1496-1521.

[160] C. WaANG, J.G. Liu AND H. JOHNSTON, Analysis of a fourth order finite difference method for
the incompressible Boussinesq equations, Numer. Math., 97(3) (2004), pp. 555-594.

[161] Y. ZHANG, Y. HOU AND J. ZHAO, Error analysis of a fully discrete finite element variational
multiscale method for the natural convection problem, Comput. Math. Appl., 68(4) (2014), pp.
543-567.

[162] B. ZHANG, J. ZHAO AND M. L1, The divergence-free nonconforming virtual element for the
Navier-Stokes problem, Numer. Methods Partial Differential Equations, 39(3) (2023), pp. 1977
1995.



Bibliography 181

[163] J. ZuAo, B. ZHANG, S. CHEN AND S. MAO, The Morley—type virtual element for plate bending
problems, J. Sci. Comput., 76(1) (2018), pp. 610-629.

[164] J. ZHAO, B. ZHANG, S. MAO AND S. CHEN, The divergence-free nonconforming virtual element
for the Stokes problem, SIAM J. Numer. Anal., 57(6) (2019), pp. 2730-2759.



	Agradecimientos
	Abstract
	Resumen
	Contents
	List of Figures
	List of Tables
	Introduction
	Motivation and general background
	The Virtual Element Method
	Preliminary notations

	A C1 virtual element method for the stationary quasi-geostrophic equations of the ocean
	Introduction
	The model problem
	The virtual element scheme
	Virtual spaces and polynomial projections
	Construction of the discrete forms
	Discrete problem and fixed-point strategy

	Convergence analysis
	Numerical results
	Test 1: Smooth solution
	Test 2: Solution with western boundary layer
	Test 3: Solution with vortex in the top-right corner of the domain
	Test 4: L-shaped domain


	Virtual element methods for a stream-function formulation of the Oseen equations
	Introduction
	Model problem
	Virtual element method
	Virtual spaces and polynomial projections operator
	Construction of the local and global discrete forms
	Discrete formulation

	Error analysis
	Preliminary results
	A priori error estimates

	Recovering the velocity, vorticity and pressure fields
	Computing the velocity field
	Computing the fluid vorticity
	Computing the fluid pressure

	Numerical results
	Test 1. Smooth solution
	Test 2. Solution with boundary layer
	Test 3. Solution with non homogeneous Dirichlet boundary conditions.


	Virtual elements for the Navier–Stokes system: stream function form and primitive variables recovery algorithms
	Introduction
	Weak stream-function form and its well-posedness
	The C1-virtual element approximation
	Virtual spaces and degrees of freedom
	Polynomial projections and the discrete formulation

	Theoretical analysis
	Fixed-point strategy
	Error estimates
	A priori estimate
	Error estimates in H1 and L2


	Computing further variables of interest
	The fluid velocity and vorticity recovery algorithm
	The fluid pressure recovery algorithm
	Continuous variational formulation
	C0-VE approximation
	Theoretical analysis


	Extension to the boundary conditions on the pressure case
	Numerical experiments
	Some aspects of the numerical implementation
	Test 1. The exact solution of Kovasznay flow
	Test 2. No flow problem for the Navier–Stokes equations
	Test 3. The lid-driven cavity problem
	Test 4. Solution with less regularity
	Test 5. The Navier–Stokes system with BCs on the pressure


	A fully-discrete virtual element method for the nonstationary Boussinesq equations in stream-function form
	Introduction
	The continuous problem
	The time dependent Boussinesq system
	The time dependent stream-function–temperature formulation
	Well-posedness of the weak formulation

	Virtual elements discretization
	Polygonal decompositions and notations
	Virtual element space for the stream-function
	Virtual element space for the temperature
	L2-projections and the discrete forms

	Fully-discrete formulation and its well posedness
	Convergence analysis
	Preliminary results
	Error estimates for the fully-discrete scheme

	Numerical results
	Accuracy assessment
	Performance of the VEM for small viscosity
	Natural convection in a cavity with the left wall heating


	The Morley-type virtual element method for the Navier–Stokes equations in stream-function form
	Introduction
	Preliminaries and continuous weak form
	The stream-function weak form

	Morley-type virtual element approximation
	Some auxiliary spaces
	The Morley-type nonconforming virtual element space
	Polynomial projection operators and discrete forms

	Discrete formulation and its well-posedness
	A new enriching operator
	Discrete Sobolev embeddings and properties of the discrete forms
	A fixed-point strategy

	Error analysis
	An abstract convergence result
	Approximation results and a priori error estimate
	Error estimates in broken H1 and L2

	Postprocessing of further fields of interest
	Postprocessing the velocity field
	Postprocessing the vorticity field
	Postprocessing the pressure field

	Numerical results
	Test 1. Kovasznay flow
	Test 2. L-shaped domain
	Test 3. The lid-driven cavity problem
	Test 4. Performance of the scheme for small viscosity


	Conclusions and future work
	Concluding remarks
	Future work

	References

