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ABSTRACT

The main objective of this doctoral thesis is to design, analyze and implement novel con-
forming and nonconforming virtual element methods for solving problems that arise in �uid
mechanics and large scale wind-driven ocean circulation, formulated in terms of the stream-
function of the velocity �eld. The present study includes mathematical analysis for the con-
tinuous and discrete problems, a new and rigorous convergence analysis in several important
norms. Moreover, it includes numerical implementation to validate the theoretical results and
illustrate the behaviour of the discrete schemes.

Firstly, we propose and analyze a C1-conforming virtual element scheme of low order for
solving the stationary quasi-geostrophic equations of the ocean, formulated in terms of the
stream-function variable. Under the assumption of small data and by using a �xed-point
strategy, we establish the well-posedness of the discrete problem. Moreover, under standard
assumptions on the computational domain, we provide error estimates in H2-norm for the
stream-function.

Subsequently, we write a weak formulation for the linear Oseen problem in terms of the
stream-function on simply connected polygonal domains. Then, we propose and analyze C1-
conforming virtual discretization of arbitrary order k ≥ 2. We establish that the resulting
schemes converge with an optimal order in H2-norm. Besides, we compute further variables of
interest, such as the velocity, the vorticity and the pressure.

Additionally, we propose C1 virtual element approximations of high order k ≥ 2 for the
Navier�Stokes equations in stream-function form. A novel analysis is developed to prove opti-
mal error estimates in H2-, H1- and L2-norms, under minimal regularity condition on the weak
stream-function solution. Furthermore, we extend these schemes to the system with nonstan-
dard boundary conditions on the pressure. Algorithms to compute the velocity, pressure and
vorticity �elds as a postprocess of the discrete stream-function are proposed and optimal error
bounds are provided for these postprocessed variables.

Furthermore, we develop a fully-discrete virtual element scheme for the time dependent
Boussinesq system formulated in terms of the stream-function and temperature unknowns.
We employ the C1- and C0-conforming virtual element approaches to discretize the spatial
variables and for time derivatives we use a classical Euler implicit method. We provide the
well-posedness and unconditional stability of the fully-discrete scheme. Furthermore, we derive
error estimates in L2(H2) ∩ L∞(H1) and L2(H1) ∩ L∞(L2)-norms for the stream-function and
temperature variables, respectively.

Finally, we design a Morley-type virtual element method for solving the Navier�Stokes
problem in stream-function formulation. A rigorous stability and error analysis by employing
a new enriching operator is developed. More precisely, by using such operator, we provide
novel discrete Sobolev embeddings, which allows to establish the well-posedness of the discrete
formulation and obtain optimal error bounds in broken H2-, H1- and L2-seminorms, under
minimal regularity condition on the weak solution. Some important variables such as the
velocity, pressure and vorticity are obtained through postprocessing algorithms from the discrete
stream-function.

For all the situations described above, several numerical experiments are reported on di�er-
ent families of polygonal meshes, illustrating the behavior of the virtual schemes and supporting
our theoretical �ndings.

Key Words: Conforming and nonconforming virtual element methods, Quasi-geostrophic
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equations, Navier�Stokes model, Oseen problem, nonstationary Boussinesq system, stream-
function formulation, discrete Sobolev embeddings, optimal error estimates, minimal regularity,
primitive variable recovery, polygonal meshes.
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RESUMEN

El objetivo principal de esta tesis doctoral es diseñar, analizar e implementar nuevos métodos
de elementos virtuales conformes y no conformes para resolver problemas que surgen en la
mecánica de �uidos y la circulación oceánica impulsada por el viento a gran escala, formulados
en términos de la función de corriente del campo de velocidades. El presente estudio incluye
análisis matemático para los problemas continuos y discretos, un nuevo y riguroso análisis de
convergencia en varias normas importantes. Además, se incluye implementación numérica para
validar los resultados téricos e ilustrar el comportamiento de los esquemas discretos.

En primer lugar, proponemos y analizamos un esquema C1-conforme de elementos virtuales
de bajo orden, para resolver las ecuaciones cuasi-geostró�cas estacionarias del océano, formu-
ladas en términos de la variable de función de corriente. Bajo el supuesto de datos pequeños y
mediante el uso de una estrategia de punto �jo, establecemos el bien planteamiento del problema
discreto. Además, bajo suposiciones estándar sobre el dominio computacional proporcionamos
estimaciones de error en norma H2 para la función de corriente.

Posteriormente, escribimos una formulación débil para el problema lineal de Oseen en térmi-
nos de la función de corriente en dominios poligonales simplemente conexos. Luego, proponemos
y analizamos una discretización C1 conforme de orden arbitrario k ≥ 2. Establecemos que los
esquemas resultantes convergen con un orden óptimo en norma H2. Además, calculamos otras
variables de interés, como la velocidad, la vorticidad y la presión.

Adicionalmente, proponemos aproximaciones C1 de elementos virtuales de orden superior
k ≥ 2 para las ecuaciones de Navier�Stokes formuladas en términos de la función de corriente.
Se desarrolla un novedoso análisis para probar estimaciones de error óptimas en las normas
H2, H1 y L2, bajo condiciones de regularidad mínima de la función de corriente débil. Además,
extendemos estos esquemas al sistema con condiciones de contorno no estándar sobre la presión.
Se proponen algoritmos para calcular los campos de velocidad, presión y vorticidad como un
postproceso de la función de corriente discreta y se han proporcionado cotas de error óptimos
para estas variables postprocesadas.

Además, desarrollamos un esquema de elementos virtual complemente discreto para el sis-
tema Boussinesq dependiente del tiempo formulado en términos de las incógnitas función de
corriente y temperatura. Empleamos los enfoques C1 y C0 de elementos virtuales conformes
para discretizar las variables espaciales y para las derivadas temporales utilizamos un método
implícito clásico de Euler. Proporcionamos la buena postura y la estabilidad incondicional
del esquema totalmente discreto. Además, derivamos estimaciones de error en las normas
L2(H2) ∩ L∞(H1) y L2(H1) ∩ L∞(L2) para las variables función de corriente y temperatura,
respectivamente.

Finalmente, diseñamos un método de elementos virtuales tipo Morley para resolver el prob-
lema de Navier�Stokes en la formulación de la función de corriente. Se desarrolla un riguroso
análisis de estabilidad y de error empleando un nuevo operador enriquecido. Más precisa-
mente, utilizando dicho operador, proporcionamos novedosas inclusiones de Sobolev discretas,
que permiten establecer el buen planteamiento de la formulación discreta y obtener cotas de
error óptimas en las seminormas H2, H1 y L2, bajo condiciones de regularidad mínima sobre
la solución débil. Algunas variables importantes como la velocidad, la presión y la vortici-
dad se obtienen mediante novedosos algoritmos de posprocesamiento de la función de corriente
discreta.

Para todas las situaciones descritas anteriormente, se reportan varios experimentos numéri-
cos en diferentes familias de mallas poligonales, que ilustran el comportamiento de los esquemas
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virtuales y respaldan nuestros hallazgos teóricos.

Palabras Claves: Métodos de Elementos Virtuales conformes y no conformes, ecuaciones
quasi-geostró�cas del océano, modelo de Navier�Stokes, problema Oseen, sistema no esta-
cionario de Boussinesq, formulación de la función de corriente, inclusiones discretas de Sobolev,
estimaciones óptimas de error, mínima regularidad, recuperación de variables primitivas, mallas
poligonales.
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Chapter 1

Introduction

1.1 Motivation and general background

The numerical approximation of viscous incompressible �uid problems have acquired great
interest due to the variety of applications in di�erent research areas, such as: engineering, en-
vironmental and industrial processes, oceanography, climatology, biomedicine, among others.
Depending on the type of phenomenon and the medium in which the �uid is located, di�erent
mathematical models, such as, Brinkman, Oseen, Navier-Stokes, and Boussinesq models can be
used to obtain adequate results to study the dynamics of the �uid in terms of the speci�c vari-
ables of interest. Some examples are given by the velocity, pressure, temperature, pseudostress,
vorticity, and more importantly for the present thesis, the stream-function. In general, the
analytical solution of these problems is di�cult to obtain. Therefore, it is necessary to develop
e�cient numerical schemes to approximate their solutions.

In this thesis we are interested in solving linear and nonlinear problems with applications
to �uid mechanics and large scale wind-driven ocean circulation, namely: the one-layer Quasi-
Geostrophic equations of the ocean, the Oseen problem, the Navier-Stokes equations and the
Boussinesq system. In particular, for these models we are interested in formulations where the
stream-function is the principal unknown.

The stream-function formulation

Typically, the velocity-pressure formulation is the most commonly used to discretize the
Navier-Stokes equations (or other �uid �ow problems). However, the stream-function formula-
tion has shown to be a competitive alternative to discretize these systems. In fact, if Ω ⊂ R2 is
a bounded simply connected domain, then we can associate to a divergence-free velocity �eld
u a scalar function ψ, such that

u = curl ψ, (1.1.1)

which is called stream-function. By using the above identity, we have that the incompressible
Navier-Stokes problem can be formulated in terms of this scalar variable. Such formulation is
given by a single fourth-order problem (cf. (4.1.1)), which is characterized for the presence of
the biharmonic operator. For further details, we refer to [103, Chapter IV, Section 2.1].

In the two dimensional case, we can highlight the following features of the stream-function
form: the system is reduced in a single scalar weak formulation, with automatic satisfaction
of the incompressibility constraint (by de�nition, see (1.1.1)), the possibility to recover further
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2 Chapter 1. Introduction

variables of physical interest, such as; the velocity, pressure and vorticity �elds through post-
processing algorithms from the stream-function. Additionally, it represents one of the most
useful tools in �ow visualization and for linear models (Stokes or Brinkman problems) the
matrix associated turns out to be positive de�nite, allowing for more e�cient methods such
as Cholesky factorization or conjugate gradient. Moreover, for nonlinear problems (such as
the Navier-Stokes and Boussinesq equations), the resulting trilinear form in the momentum
is naturally skew-symmetric (without adding additional terms), allowing more direct stability
and convergence arguments. Furthermore, the stream-function approach avoids the di�cul-
ties related to the implementation of the boundary vorticity values, which are presented in
stream-function�vorticity form.

Due to the attractive characteristics discussed above, the stream-function formulation has
received signi�cant attention from many researchers. In particular, a notable number of works
have been devoted to the design and analysis of numerical methods to approximate the Navier-
Stokes problem. For instance, conforming and nonconforming Finite Element Methods (FEMs)
in [71, 72, 90, 91, 68], Bivariate Spline methods [115], hp-version discontinuous FE [143],
NURBS-based Isogeometric Analysis in [151]. Moreover, in [95, 111] C1-conforming and non-
conforming Morley FEMs has been studied for solving the steady quasi-geostrophic equations
in stream-function formulation (compare below the systems (2.2.1) and (4.1.1)).

On the other hand, we recall that to discretize fourth-order problems in primal form, using
the classical conforming FE spaces yields notable disadvantages: �rstly, the construction of
these spaces involve high-order polynomials and a large number of degrees of freedom (at least
18 for triangular polynomial elements), which commonly is considered a demanding task from
the computational viewpoint. A possible alternative to avoid such high order polynomials is
to resort to very complicated FE construction (for instance, the Hsieh-Clough-Tocher or the
singular Zienkiewicz triangles). Moreover, the regularity requirements of the weak solution are
high, which are not realistic and inappropriate in practice. The main reason of these di�culties
is the required continuity of the �rst order partial derivatives across adjacent elements. For
further details, we refer to [79, Chap. 6, sect. 6.1]).

In order to overcome these drawbacks, in this thesis we consider the approach presented
in [58, 77, 18] to introduce C1-virtual element methods to approximate linear and nonlinear
�uid �ow problems in stream-function formulation. On the other hand, we contribute to the
development and analysis of novel nonconforming Morley-type virtual schemes to discretize the
Navier-Stokes equations.

1.2 The Virtual Element Method

The Virtual Element Method (VEM) was presented to the scienti�c community for �rst time
about 10 years ago in the pioneering paper [27] as an evolution of mimetic �nite di�erences
and a generalization of FEM. The VEM belongs to the group of polytopal Galerkin schemes for
solving PDEs, which have received signi�cant interest in recent years due to their versatility in
dealing with complex geometries (see for instance [149, 86, 32, 108, 70, 88]).

According to [27] the general features of VEM can be summarized as follows:

� The discrete local spaces are built in such a way that they contain the polynomial spaces
of degree up to k (this fact determines the accuracy of the method), and other non-
polynomials functions that are solution of a PDE problem inside the element, which is
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never resolved. Therefore, the exact values in the interior of the polygon/polyhedron of
these shape functions are unknown (hence the terminology �virtual�).

� Only the evaluation of the degrees of freedom is required in the design of the forms
appearing in the discrete formulation. The degrees of freedom are chosen carefully so that
the projections onto polynomial spaces can be computed using only their information.

� The bilinear forms appearing in the discrete formulation are built based on two main
ingredients: projections from local virtual element spaces onto polynomial spaces and
bilinear forms that stabilize the scheme.

From the �rst and second items, we observe that the approach of VEM allows to avoid an
explicit construction of the discrete basis functions and this fact implies a high �exibility of
the method, for instance, VEM has the ability to design numerical schemes of high-order on
general polygonal meshes (including the desired nonconvex shapes and �hanging vertexes�) in a
straightforward way. Moreover, the method has capability to build discrete spaces with high-
regularity (Cα-regularity, with α ≥ 1) and construct divergence-free schemes in the context of
�uid �ow problems. Due to these characteristics, the VEM has achieved signi�cant success in
computational modeling and practical engineering uses, both in its conforming and noncon-
forming frameworks (see for instance [7, 65, 29, 39, 22, 126, 127, 153, 159, 116]). In particular,
many works have been devoted to approximate the solutions of problems in �uid mechanics
by using the VEM technology. Below are two list of representative works in the conforming
and nonconforming cases; [17, 59, 34, 98, 35, 157, 41, 97, 21, 131] and [64, 118, 164, 119, 162],
respectively.

Conforming and fully nonconforming VEMs for fourth-order problems

Due to its importance, applicability and challenging nature, the construction of Galerkin
schemes to solve fourth-order problems has been a very active area of research. Indeed, a wide
variety of numerical approaches have been presented for solving these systems, see for instance
[79, 68, 142, 101, 53] and references therein, where classical conforming and nonconforming FE
schemes, C0-IP methods, among others have been developed and analyzed.

Recently, in [58] was introduced a family of C1-VEM of high order k ≥ 2, to solve the
Kirchho�-Love plate problem, which in the lowest order case employed only 3 degrees of freedom
per mesh vertex (the function and its gradient values vertex). This fact makes C1-VEM a very
attractive and competitive approach compared to the typical C1-FEMs.

Subsequently, in [18] was introduced a variant of this family. More precisely, by employing
the enhancement technique [7], a C1-VEM of lowest order was developed and analyzed for the
two dimensional Cahn-Hillard equation. In the same year, the authors in [77] also designed
a variant of the high-order VEMs presented in [58]. By using also the ideas developed in [7]
the authors design an enhancement C1-VEMs for solving fourth-order problems, obtaining now
optimal error estimates in the weak L2- and H1-norms.

Additionally, in [36, 19], the authors investigated the application of VEM to construct �nite
dimensional spaces of arbitrarily regular Cα-functions, with α ≥ 1, where promising results
have been observed to solve equations involving high order PDEs.

It is important to point out that in [30] the authors designed a C1-VEM for the challenging
case of three-dimensional fourth-order problems.
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Since then, several schemes and analyses based on the C1-conforming VEM have been
designed for solving linear and nonlinear problems; below is a non-exhaustive list of works [38,
135, 116, 159, 139, 122, 3, 56, 1].

In Table 1.1, we illustrate a comparison between the C1-VEM of lowest order and classical
C1-FEMs used to approximate fourth-order problems, namely; the Argyris and Bell triangles,
the Hsieh�Clough�Tocher (HCT) element and the Bogner-Fox-Schmit rectangle. In particular,
we show the numbers of local (Ndof

K ) and global (Ndof
h ) degrees of freedom (DoFs) for the

numerical schemes, the polynomial spaces (Pk) involved and the regularity conditions on the
weak solution to obtain error estimates. We observe that the C1-VEM in the lowest order case
employ only 3 DoFs per vertex of the mesh, i.e, 3Nv, where Nv denotes the number of vertices
in the polygonal mesh (9 on a triangle and 12 for rectangle), which is much smaller than that of
the traditional conforming FEMs. Moreover, from the analysis developed in Section 4.4.2 (see
also Theorem 4.4.3), we observe that the C1-VEM of lowest order needs the slightest regularity
requirement for the weak stream-function to establish error estimates, even for the nonlinear
Navier-Stokes problem in stream-function form.

type of elements Ndof
K Pk Ndof

h assumed regularity

C1-VEMs of lowest order 9 P2 3Nv H2+s(Ω), s ∈ (0, 1]
Argyris triangle 21 P5 9Nv H6(Ω)
Bell triangle 18 P4 6Nv H5(Ω)
HCT element 12 P3 6Nv H4(Ω)

Bogner-Fox-Schmit rectangle 16 P3 4Nv H4(Ω)

Table 1.1: The numbers of local and global DoFs for the conforming C1-VEM of lowest order
and for some typical C1-FEMs, the polynomial spaces involved and regularity conditions on
the weak solution to obtain error estimates.

On the other hand, in [20, 163] the authors introduced independently a few families of
VEMs to solve fourth-order problems in an alternative way. The schemes are based on fully-
nonconforming VEMs of high-order k ≥ 2. In particular, the lowest order con�guration (i.e.,
k = 2) of these VEMs can be consider as the extension of the popular Morley FE [141] to
general polygonal meshes. Since then, several schemes and analysis based on these VEMs have
been developed for linear problems; see for instance [116, 159, 81, 107, 67, 4].

According to the above discussion, in this thesis we are interested in further exploring the
ability of the conforming and fully nonconforming VEM to approximate fourth-order problems
that arise in �uid mechanics, considering the stream-function approach.

We summarize below the contributions of our study.

The stationary quasi-geostrophic equations of the ocean

The quasi-geostrophic equations (QGE) is a fundamental mathematical model used to de-
scribe the large scale wind-driven motions of the ocean. It is a simpli�ed model that is particu-
larly useful for understanding the dynamics of geophysical �uid �ows in the Earths oceans (see
for instance [124, 145, 156]) and due to their important role and applicability in the climate
dynamics, in recent years there has been an increasing focus on the development of e�cient
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numerical schemes to solve such equations. For instance, in the last decades several work devel-
oped discretization for this model formulated in terms of the vorticity�stream-function variables
[69, 93, 130]. However, more recently the authors in [95] have been presented and analyzed for
�rst time a FEM for these equations in pure stream-function formulation, which corresponds to
a nonlinear Partial Di�erential Equation (PDE) of fourth-order (cf. (2.2.1)). This FE scheme is
based on the conforming Argyris element. Moreover, in [113, 110, 10, 112, 111] other conforming
and nonconforming FEMs have been designed to solve the stationary QGE.

In Chapter 2, we propose and analyze a C1-conforming VEM to solve the stationary
quasi-geostrophic equations with applications in the large scale wind-driven ocean circulation,
formulated in terms of the stream-function. The C1 virtual space and the discrete scheme
are built in a straightforward way due to the �exibility of the virtual approach. Under the
assumption of small data, we prove the well-posedness of the discrete problem using a �xed-
point strategy and under standard assumptions on the computational domain, we establish error
estimates in H2-norm for the stream-function. Finally, we report four numerical experiments
that illustrate the behaviour of the proposed scheme and con�rm our theoretical results on
di�erent families of polygonal meshes.

The results contained in this chapter gave rise to the following article:

➤ D. Mora and A. Silgado, A C1 virtual element method for the stationary quasi-
geostrophic equations of the ocean, Comput. Math. Appl., 116 (2022), pp. 212�228.

The stream-function formulation of the Oseen equations

The Oseen equations results from a linearization of the steady (or alternatively from the
implicit Euler time-discretization of the unsteady) Navier�Stokes problem. This equation pro-
vides a simpli�ed yet accurate representation of �uid �ow under certain conditions and has
been instrumental in various engineering and scienti�c applications.

In the last year, several work have been devoted to the development and analysis of Galerkin
schemes for the numerical solution of the Oseen equations employing di�erent formulations. In
particular, we mention [8, 13, 23, 24, 25, 52, 61, 78, 73, 94], where HHO, classical and stabilized
FEMs, Least-squares methods, among others have been proposed.

In Chapter 3, we analyze VEMs to solve the Oseen equations in terms of the stream-
function on simply connected polygonal domains. The methods are based on a C1-conforming
virtual discretization of arbitrary order k ≥ 2. Under standard assumptions on the compu-
tational domain, we establish that the resulting schemes converge with an optimal order in
H2-norm. The proposed methods have the advantages of using general polygonal meshes and
the possibility to compute further variables of interest, such as the velocity, the vorticity and
the pressure. Finally, we report some numerical tests illustrating the behavior of the virtual
schemes and supporting our theoretical results on di�erent families of polygonal meshes.

The results contained in this work are in the following book chapter:

➤ D. Mora and A. Silgado, Virtual element methods for a stream-function formulation
of the Oseen equations. In: Antonietti, P.F., Beirão da Veiga, L., Manzini, G. (eds), The
Virtual Element Method and its Applications. SEMA SIMAI Springer Series, vol 31, pp.
321-361, (2022). Springer, Cham.
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The stationary Navier-Stokes equations in stream-function

formulation

The Navier-Stokes is one of most important and challenging problems in �uid mechanics.
This system describes the motion of a viscous incompressible �uid in a medium. Mathemat-
ically, the standard model corresponds to a combination of the conservation of mass and a
nonlinear PDEs, where the velocity and pressure are the unknowns, which is called the momen-
tum equation (see (6.1.1)). The analytic solution of this system continues to be a paradigm in
�uid �ow problems. Thus, due to its importance and applicability, several numerical methods
have been developed to approximate its solution. Among these schemes, we mention classi-
cal Galerkin methods in mixed form used to discretize its standard formulation in terms of
the primitive variables velocity and pressure. In this framework, the discrete spaces must be
constructed appropriately to satisfy the inf-sup condition, ensuring the well-posedness of the
mixed discrete formulation (see [103]).

Another desirable yet restrictive condition for these schemes is the one associated with
the incompressibility requirement, a scenario in which the error components are partly decou-
ple (but indirectly in the load term approximation) and for which di�erent approaches have
been devoted to the construction of schemes satisfying this property (see for instance the re-
view [109]).

As we discussed previously, by introducing the stream-function variable ψ (cf. (1.1.1)), the
typical velocity-pressure form is reduced in a single nonlinear fourth-order PDEs (cf. (4.1.1)).
For this formulation the discretization does not need the construction of discrete stable spaces
satisfying the inf-sup condition, in addition the incompressibility constraint is automatically
satis�ed. Below we mention some works discretizing this formulation by using conforming and
nonconforming FEMs [71, 72, 90, 91, 92, 68].

Motivated in the above discussion (and in the facts mentioned in the initial sections), we are
interesting in keeping on exploring the �exibility and ability of VEM to solve the Navier-Stokes
equation in stream-function formulation. In particular, we propose novel C1-VEMs and a new
Morley-type VEM to discretize this problem.

In Chapter 4, C1-VEMs of arbitrary order k ≥ 2 for the two-dimensional Navier-Stokes
equations in stream-function form are proposed and analyzed. A novel analysis is developed
to prove optimal error estimates in H2-, H1- and L2-norms, under minimal regularity condition
on the weak stream-function solution. Moreover, we extend these schemes to the system with
boundary conditions on the pressure. Strategies to compute the velocity, pressure and vorticity
�elds as a postprocess of the discrete stream-function are proposed and optimal error estimates
have been established for these variables. The theoretical �ndings are further con�rmed via
illustrative numerical experiments on di�erent families of polygonal meshes.

The results of this conforming approach are in the following submitted article:

➤ D. Mora and A. Silgado, Virtual elements for the Navier-Stokes system: stream-
function form and primitive variables recovery algorithms, submitted for publication
(2023).

On the other hand, in Chapter 6, we propose an alternative to discretize the Navier-
Stokes equations in stream-function form. Indeed, we design a nonconforming Morley-type
virtual element method for solving such system on simply connected polygonal domains (not
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necessarily convex). A rigorous analysis by using a new enriching operator is developed. More
precisely, by employing such operator, we provide novel discrete Sobolev embeddings, which
allow to establish the well-posedness of the discrete scheme and obtain optimal error estimates
in broken H2-, H1- and L2-norms under minimal regularity condition on the weak solution.
The velocity and vorticity �elds are recovered via postprocessing formulas. Furthermore, a new
algorithm for pressure recovery based on a Stokes complex sequence is presented. Optimal error
estimates are obtained for all the postprocessed variables. Finally, the theoretical error bounds
and the good performance of the method are validated through several benchmark tests.

The results with this nonconforming approach are in the following article:

➤ D. Adak, D. Mora and A. Silgado, The Morley-type virtual element method for
the Navier-Stokes equations in stream-function form, Comput. Methods Appl. Mech.
Engrg., 419 (2024), Paper No. 116573.

The nonstationary Boussinesq system in stream-function

form

The Boussinesq system describes the behavior of �uid �ow in the presence of buoyancy
e�ects. This system are particularly useful for studying natural convection phenomena, where
�uids experience motion due to di�erences in temperature. The primary focus of these equations
is to capture the interplay between the pressure, velocity, and temperature �elds in the �uid
domain. This model is a valuable tool in understanding and predicting the complex behavior
of �uids under the in�uence of buoyancy forces and have numerous applications in areas such
as meteorology, environmental, industrial and engineering process, among others.

Due to its relevance and presence in the di�erent applications mentioned above, many works
have been devoted to studying these equations (and some variants). For instance, regarding
the analysis of stability and regularity, we refer to [140, 121]. Besides, over the last decades
several numerical schemes have been developed to approximate this problem in its steady
and/or unsteady regimens, considering temperature-dependent parameters, and using the clas-
sical velocity�pressure�temperature and pseudostress�velocity�temperature formulations, see
for instance [47, 50, 150, 161, 144, 9, 82, 85, 11] and the references therein. In addition, some
numerical work have been devoted to approximate these equation by using the stream-function�
vorticity approaches, see for instance [148, 152, 120, 160].

In Chapter 5, we propose and analyze fully-coupled virtual element approximations of
high order for solving the two dimensional nonstationary Boussinesq system in terms only
of the stream-function and temperature �elds. The discretization for the spatial variables is
based on the coupling C1- and C0-conforming virtual element approaches, while a backward
Euler scheme is employed for the temporal variable. Well-posedness and unconditional stability
of the fully-discrete problem are provided. Moreover, error estimates in L2(H2) ∩ L∞(H1)
and L2(H1)∩ L∞(L2)-norms are derived for the stream-function and temperature, respectively.
Finally, a set of benchmark tests are reported to con�rm the theoretical error bounds and
illustrate the behavior of the fully-discrete scheme.

The results contained in this chapter are in the following article:

➤ L. Beirão da Veiga, D. Mora and A. Silgado, A fully-discrete virtual element
method for the nonstationary Boussinesq equations in stream-function form, Comput.
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Methods Appl. Mech. Engrg., 408 (2023), Paper No. 115947.

1.3 Preliminary notations

In this section we will introduce some preliminary notations that will be used throughout
this thesis, including those already employed above. Thenceforth, Ω will denote a simply
connected, open and bounded domain of R2, with polygonal Lipschitz-continuous boundary
Γ := ∂Ω. The vector n = (ni)1≤i≤2 will denote the outward unit normal vector to the boundary
Γ, while t = (ti)i=1,2 := (−n2, n1) denote the unit tangent vector to Γ. Moreover, we denote by
∂n and ∂t the normal and tangential derivatives, respectively.

According to [6], for any open measurable bounded domainD ⊆ Ω, with Lipschitz-continuous
boundary we will employ the usual notation for the Banach spaces Lp(D) and the Sobolev spaces
Ws

p(D), with s ≥ 0 and p ∈ [1,+∞], with the corresponding seminorms and norms are denoted
by | · |Ws

p(D) and ∥ · ∥Ws
p(D), respectively. We adopt the convention W0

p(D) := Lp(D) and in
particular when p = 2, we write Hs(D) instead to Ws

2(D), the corresponding seminorm and
norm of these space will be denoted by | · |s,D and ∥ · ∥s,D, respectively. Furthermore, for any
integer ℓ ≥ 0 denote by Pℓ(D) the space of polynomials of degree up to ℓ de�ned on an open
bounded subdomain D ⊂ R2.

In addition, we denote by S the corresponding vectorial version of a generic scalar S space,
examples of this are: Ws

p(D) := [Ws
p(D)]2 and Pℓ(D) = [Pℓ(D)]2.

For any tensor �elds τ = (τij)i,j=1,2 and σ = (σij)i,j=1,2, we consider the standard scalar
product of 2 × 2-matrices: τ : σ =

∑2
i=1 τijσij. Moreover, for any scalar �eld φ and vector

�elds v = (vi)i=1,2,w = (wi)i=1,2, the scalar, vectorial and tensorial L2-inner products will be
denoted by

(φ, ϕ)0,D =

∫
D
φ ϕ dD, (v,w)0,D =

∫
D
v ·w dD, (τ ,σ)0,D =

∫
D
τ : σ dD.

We recall the following di�erential operators (gradients, curl, matrix Hessian, divergence
and rotational):

∇φ :=

(
∂1φ
∂2φ

)
, curl φ :=

(
∂2φ

−∂1φ

)
, D2φ := (∂ijφ)i,j=1,2

∇v := (∂ivj)i,j=1,2, div v := ∂1v1 + ∂2v2, rotv := ∂1v2 − ∂2v1.

Besides, the Laplacian and Bilaplacian operators are de�ned by ∆φ := div(∇φ) and ∆2φ :=
∆(∆φ), respectively. The bold symbols ∇ and ∆ denote the gradient and Laplacian operators
for vector �elds, respectively.

On the other hand. From the Green Theorem, for all q ∈ H1(D), u ∈ H2(D) and for any
v ∈ H1(D), we have the following integration by parts.∫

D
∇q · v = −

∫
D
q div v +

∫
∂D
q (v · nD),∫

D
q∆u = −

∫
D
∇u · ∇q +

∫
∂D
q∂nDu,∫

D
curl q · v =

∫
D
q rotv +

∫
∂D
q (v · tD).
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For the evolution problem studied in Chapter 5, we will denote by t the temporal variable
with values in the interval I := (0, T ], where T > 0 is a given �nal time. Moreover, given a
Banach space V endowed with the norm ∥ · ∥V , we de�ne the space Lp(0, T ;V ) as the space of
classes of functions ϕ : (0, T ) → V that are Bochner measurable and such that ∥ϕ∥Lp(0,T ;V ) <∞,
with

∥ϕ∥Lp(0,T ;V ) :=

(∫ T

0

∥ϕ(t)∥pV dt
)1/p

and ∥ϕ∥L∞(0,T ;V ) := ess sup
t∈[0,T ]

∥ϕ(t)∥V .

In what follows, c and C, with or without subscripts, tildes, or hats, will represent a generic
constant independent of the mesh parameter h, that might have distinct values in di�erent
occurrences.



Chapter 2

A C1 virtual element method for the

stationary quasi-geostrophic equations of

the ocean

2.1 Introduction

The quasi-geostrophic equations (QGE) is one of the popular mathematical models employed
for understanding the behavior of the large scale wind-driven ocean circulation [124, 145, 156].
Due to their important role in the climate system, there has been a growing interest in recent
years towards developing e�cient numerical schemes to solve such equations. We are going to
consider the so-called one-layer QGE (also called as the barotropic vorticity equation), where
the �ow is assumed to be homogeneous in the vertical direction. Thus, strati�cation e�ects are
ignored in this model and a bi-dimensional nonlinear fourth order partial di�erential equation,
in terms of the stream-function variable, can be written. Despite the simpli�cations, the model
preserves many of the essential features of the underlying large scale ocean �ows. Further
details related to the derivation of these equations can be found in [123, 129]. On the other
hand, we note that the QGE equations can be seen as an extension of the stream-function
formulation of the Navier�Stokes equations (NSE).

Di�erent �nite element discretizations have been developed recently for these equations.
For instance, in [95] is presented a conforming �nite element based on the Argyris element,
optimal error estimates are obtained and several numerical experiment are reported. In [113]
the authors present a B-spline based conforming �nite element method to approximate the
stream-function, also several numerical simulations are performed. Error estimates for this
method are presented in [110] and a posteriori error analysis has been recently analyzed in
[10]. In [112], is presented a non-conforming C0-discontinuous Galerkin method, the authors
introduced the new variational form of the method and they established consistency and error
estimates. In addition, the quasi-geostrophic equations have been solved by using di�erent
�nite element methods in terms of the stream-function and vorticity variables in the following
references [69, 93, 130, 132]. Moreover, �nite element methods for the Navier�Stokes equations
in stream-function formulation have been presented in [71, 72, 90, 92].

It is well known that conforming �nite element spaces of H2 are of complex implementation
and contain high order polynomials (see [79]). In order to overcome this drawback, in this
work, we extend the virtual element approach proposed in [18] for the numerical solution of

10
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the QGE equations in stream-function formulation, which can be applied to general polygonal
meshes and is simple in terms of degrees of freedom and coding aspects. In fact, it has been
shown that the VEM permits to easily implement highly regular discrete spaces on general
polygonal meshes. For instance, global discrete virtual spaces of H2 to solve fourth order PDEs
have been presented in [18, 58, 77] (see also [38, 135]). Moreover, it has been recently presented
in [30] a C1 virtual element method on polyhedral meshes. The numerical solution by virtual
elements of incompressible �ow problems (Stokes, Brinkman, Stokes�Darcy and Navier�Stokes
equations) have been recently developed in the following references [17, 34, 35, 41, 59, 64, 76,
84, 98, 117, 118, 154, 164].

According to the above discussion, in the present contribution, we are interested in keep-
ing on exploring the �exibility of the VEM to solve the QGE equations with applications in
oceanic circulation. More precisely, we propose and analyze a conforming C1 virtual element
discretization of lowest order, which is based on the virtual space introduced in [18], to solve the
quasi-geostrophic equations in stream-function formulation. We observe that the functions, in
the virtual space, have continuous trace and the trace of the gradient is also continuous; thus,
the method delivers a conforming solution. We write a discrete formulation by using projector
operators to construct discrete version of the local bilinear forms and trilinear form along with
a discrete load term.

We prove well-posedness of the discrete virtual formulation by using the Banach �xed-point
Theorem and assuming that the data is in a certain sense small enough. We write error estimates
in H2-norm for the stream-function under rather mild assumptions on the polygonal meshes.
Finally, we point out that, the present analysis for the stationary QGE equations constitutes
a stepping-stone towards others related problems. For instance, two-layer quasi-geostrophic
model [130] or time dependent QGE equations [96].

This chapter is organized as follows: In Section 2.2, we recall the quasi-geostrophic equations
in terms of the stream-function and introduce the corresponding variational formulation for the
system. In Section 2.3, we present the C1-virtual element discretization of the variational
formulation. Under the assumption of small data, we prove the existence and uniqueness of the
discrete problem by using the Banach �xed-point Theorem. In Section 2.4, we establish error
estimates for the stream-function. Four numerical tests that allow us to assess the convergence
properties of the method and to check whether the experimental rates of convergence agree
with the theoretical ones are reported in Section 2.5.

2.2 The model problem

We consider the steady one-layer quasi-geostrophic equations in stream-function formulation
(for further details, see for instance [95]):

Re−1∆2ψ − curl ψ · ∇(∆ψ)− Ro−1∂xψ = Ro−1f in Ω,

ψ = ∂nψ = 0 on Γ,
(2.2.1)

where ψ is the stream-function of the velocity �eld u, i.e., u = curl ψ, and f is the source
term. The constants Re and Ro denote the Reynolds and Rossby numbers, respectively. These
parameters are de�ned by (see [95, 104, 106]):

Re :=
U L

AH
and Ro :=

U

β L2
,
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where the coe�cient β is the coe�cient multiplying the y-coordinate in the β-plane (see [156]),
L is the characteristic length scale, U is the characteristic velocity scale and AH is the eddy
viscosity parametrization.

In order to write a weak formulation of problem (2.2.1), we consider the following space:

X :=
{
ϕ ∈ H2(Ω) : ϕ = ∂nϕ = 0 on Γ

}
.

We endow the space X with the following norm

∥ϕ∥X := |ϕ|2,Ω ∀ϕ ∈ X.

Now, we multiply the corresponding equation by a test function ϕ ∈ X, integrate twice by
parts in Ω and using the boundary conditions, we obtain the following variational problem:
�nd ψ ∈ X such that:

Re−1A(ψ, ϕ) +B(ψ;ψ, ϕ)− Ro−1C(ψ, ϕ) = Ro−1F (ϕ) ∀ϕ ∈ X, (2.2.2)

where A,C : X × X → R are bilinear forms, B : X × X × X → R is a trilinear form and
F : X → R is a linear functional, de�ned as follows:

A(ψ, ϕ) :=

∫
Ω

D2ψ : D2ϕ ∀ψ, ϕ ∈ X, (2.2.3)

B(ζ;ψ, ϕ) :=

∫
Ω

∆ζ curl ψ · ∇ϕ ∀ζ, ψ, ϕ ∈ X, (2.2.4)

C(ψ, ϕ) :=

∫
Ω

∂xψ ϕ ∀ψ, ϕ ∈ X, (2.2.5)

F (ϕ) :=

∫
Ω

f ϕ ∀ϕ ∈ X. (2.2.6)

Using integration by part and the boundary conditions, it is easy to see that the bilinear
form C(·, ·) de�ned in (2.2.5) satis�es,

C(ψ, ϕ) = − C(ϕ, ψ) ∀ψ, ϕ ∈ X.

Now, we introduce the following bilinear form Cskew : X ×X → R:

Cskew(ψ, ϕ) :=
1

2
C(ψ, ϕ)− 1

2
C(ϕ, ψ) =

1

2

∫
Ω

∂xψ ϕ− 1

2

∫
Ω

∂xϕψ ∀ψ, ϕ ∈ X. (2.2.7)

Clearly
Cskew(ψ, ϕ) = C(ψ, ϕ) ∀ψ, ϕ ∈ X.

Thus, according to the above equality, we rewrite the variational problem (2.2.2) in the
following equivalent weak form: �nd ψ ∈ X such that:

Re−1A(ψ, ϕ) +B(ψ;ψ, ϕ)− Ro−1Cskew(ψ, ϕ) = Ro−1F (ϕ) ∀ϕ ∈ X. (2.2.8)

Remark 2.2.1. We observe that our VEM discretization will be based on the above weak form.
In particular, to discretize the skew-symmetric bilinear form Cskew(·, ·) (cf. (2.2.7)), we con-
struct a simple discrete form that preserves the skew-symmetry property at discrete level, which
makes the analysis of the method simpler. For instance, we observe that the analysis of exis-
tence and uniqueness of the discrete problem and the convergence analysis of the method (see
Sections 2.3.3 and 2.4, respectively) are facilitated using the skew-symmetric bilinear form.
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The following lemma establishes some properties for the forms de�ned in (2.2.3), (2.2.4),
(2.2.6) and (2.2.7), these properties will play an important role in the forthcoming sections.

Lemma 2.2.1. There exist positive constants ĈB, Ĉ1 such that

|A(ψ, ϕ)| ≤ ∥ψ∥X∥ϕ∥X ∀ψ, ϕ ∈ X, (2.2.9)

A(ϕ, ϕ) ≥ ∥ϕ∥2X ∀ϕ ∈ X, (2.2.10)

|B(ζ;ψ, ϕ)| ≤ ĈB ∥ζ∥X∥ψ∥X∥ϕ∥X ∀ζ, ψ, ϕ ∈ X, (2.2.11)

B(ζ;ψ, ϕ) = −B(ζ;ϕ, ψ) ∀ζ, ψ, ϕ ∈ X, (2.2.12)

B(ζ;ϕ, ϕ) = 0 ∀ζ, ϕ ∈ X, (2.2.13)

|Cskew(ψ, ϕ)| ≤ Ĉ1 ∥ψ∥X∥ϕ∥X ∀ψ, ϕ ∈ X, (2.2.14)

Cskew(ϕ, ϕ) = 0 ∀ϕ ∈ X, (2.2.15)

|F (ϕ)| ≤ ∥f∥−2,Ω∥ϕ∥X ∀ϕ ∈ X. (2.2.16)

Proof. The proof follows standard arguments.

In order to prove the well-posedness of problem (2.2.8), we will employ a �xed-point strategy.
Indeed, given ζ ∈ X, we de�ne the following operator

T : X −→ X

ζ 7−→ T (ζ) = φ,

where φ is the solution of the following linear problem: �nd φ ∈ X such that

Qζ(φ, ϕ) = Ro−1F (ϕ) ∀ϕ ∈ X, (2.2.17)

where the bilinear form Qζ(·, ·) is given by

Qζ(φ, ϕ) := Re−1A(φ, ϕ) +B(ζ;φ, ϕ)− Ro−1Cskew(φ, ϕ).

We note that ψ ∈ X is a solution of problem (2.2.8) if and only if T (ψ) = ψ. Thus, to prove
the well-posedness of (2.2.8), we will prove that T has a unique �xed point by means of the
classical Banach �xed-point Theorem.

The following lemma establishes that the bilinear form Qζ(·, ·) is bounded and elliptic.
Thus, operator T is well-de�ned.

Lemma 2.2.2. There exists a positive constant CQ such that

Qζ(φ, ϕ) ≤ CQ∥φ∥X∥ϕ∥X ∀φ, ϕ ∈ X,

and
Qζ(ϕ, ϕ) ≥ Re−1∥ϕ∥2X ∀ϕ ∈ X.

Proof. The result follows from Lemma 2.2.1.

By a direct application of Lax-Milgram Theorem we conclude that problem (2.2.17) has
a unique solution. In addition, from the de�nition of the continuous problem (cf. (2.2.17)),
(2.2.13), (2.2.15) and (2.2.16), the following continuous dependence holds

∥φ∥X ≤ Ro−1Re ∥f∥−2,Ω.
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Thus, operator T is well-de�ned.
In what follows, we will prove that T is a contraction mapping. Let δ := Ro−1Re∥f∥−2,Ω,

then we consider the following bounded set

N := {ϕ ∈ X : ∥ϕ∥X ≤ δ} ,

and using the previous lemma, we have that T (N ) ⊆ N .
The following lemma establishes that T is a contraction mapping and hence, according to

the Banach �xed-point Theorem, it has a unique �xed point in N .

Lemma 2.2.3. Assume that
ĈBRo

−1Re2∥f∥−2,Ω < 1. (2.2.18)

Then, T is a contraction mapping in N .

Proof. Let ζ1, ψ1, ζ2, ψ2 ∈ N , such that

T (ζ1) = ψ1 and T (ζ2) = ψ2,

then from the de�nition of the operator T (·), we have

Re−1A(ψ1, ϕ) +B(ζ1;ψ1, ϕ)− Ro−1Cskew(ψ1, ϕ) = Ro−1F (ϕ) ∀ϕ ∈ X, (2.2.19)

Re−1A(ψ2, ϕ) +B(ζ2;ψ2, ϕ)− Ro−1Cskew(ψ2, ϕ) = Ro−1F (ϕ) ∀ϕ ∈ X. (2.2.20)

Subtracting (2.2.20) from (2.2.19), we get

Re−1A(ψ1 − ψ2, ϕ) + [B(ζ1;ψ1, ϕ)−B(ζ2;ψ2, ϕ)]− Ro−1Cskew(ψ1 − ψ2, ϕ) = 0 ∀ϕ ∈ X.

Now, taking ϕ := ψ1−ψ2 in the above equation, we have that Cskew(·, ·) vanishes (cf. (2.2.15)).
Thus, we obtain

Re−1A(ψ1 − ψ2, ψ1 − ψ2) +B(ζ1;ψ1, ψ1 − ψ2)−B(ζ2;ψ2, ψ1 − ψ2) = 0.

Then, by adding and subtracting ψ2 in the second term, we have

0 =Re−1A(ψ1 − ψ2, ψ1 − ψ2) +B(ζ1;ψ1 − ψ2, ψ1 − ψ2) +B(ζ1;ψ2, ψ1 − ψ2)

−B(ζ2;ψ2, ψ1 − ψ2)

=Re−1A(ψ1 − ψ2, ψ1 − ψ2) +B(ζ1;ψ2, ψ1 − ψ2)−B(ζ2;ψ2, ψ1 − ψ2)

=Re−1A(ψ1 − ψ2, ψ1 − ψ2) +B(ζ1 − ζ2;ψ2, ψ1 − ψ2),

where we have used (2.2.13). Therefore

Re−1A(ψ1 − ψ2, ψ1 − ψ2) = −B(ζ1 − ζ2;ψ2, ψ1 − ψ2),

by using (2.2.10), (2.2.11) and the Cauchy-Schwarz inequality, we obtain

Re−1∥ψ1 − ψ2∥2X ≤ ĈB∥ψ2∥X∥ζ1 − ζ2∥X∥ψ1 − ψ2∥X ,

then, using the fact that ψ2 ∈ N , we get

∥ψ1 − ψ2∥X ≤ ĈBRe
(
Ro−1Re∥f∥−2,Ω

)
∥ζ1 − ζ2∥X = ĈBRo

−1Re2∥f∥−2,Ω∥ζ1 − ζ2∥X .

Therefore, according to assumption (2.2.18), we obtain that T is a contraction mapping, which
concludes the proof.
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The following result follows from Lemma 2.2.3 and the Banach �xed-point Theorem.

Theorem 2.2.1. If
λ := ĈB Re2Ro−1∥f∥−2,Ω < 1,

there exists a unique ψ ∈ N solution to problem (2.2.8), which satis�es the following continuous
dependence

∥ψ∥X ≤ ReRo−1∥f∥−2,Ω.

In what follows, we will assume that the source term satis�es f ∈ L2(Ω). Now, we state an
additional regularity result for the solution of problem (2.2.8). The proof of this result can be
found in [111, Lemma 2.3] (see also [49]).

Theorem 2.2.2. Let ψ ∈ N be the unique solution of problem (2.2.8). Then, there exist

s ∈ (1/2, 1] and C̃ > 0, such that ψ ∈ H2+s(Ω) and

∥ψ∥2+s,Ω ≤ C̃∥f∥0,Ω.

2.3 The virtual element scheme

In the present section, we will introduce a C1-virtual element discretization for the numerical
approximation of (2.2.8). The discrete method will be based on the virtual space introduced
in [18] for the Cahn�Hilliard equation.

We begin with some notations and assumptions to construct the projectors on polynomial
spaces, which are going to be used to build a conforming virtual space of X and to construct
the respective discrete bilinear forms, the discrete trilinear form and the discrete functional.
Finally, we prove existence and uniqueness of the discrete formulation by using the Banach
�xed-point Theorem.

Now, we have the standard mesh assumptions. Let {Th}h>0 be a sequence of decompositions
of Ω into general polygonal elements K. We will denote by hK the diameter of the element K
and by h the maximum of the diameters of all the elements of the mesh, i.e.,

h := max
K∈Th

hK .

We denote by NK the number of vertices of K, by e a generic edge of Th and for all e ∈ ∂K,
we de�ne a unit normal vector neK that points outside of K and a unit tangent vector teK .

2.3.1 Virtual spaces and polynomial projections

Now, for every polygon K ∈ Th, we introduce the following preliminary augmented local
virtual space (see [18]):

X̃h(K) :=
{
ϕh ∈ H2(K) : ∆2ϕh ∈ P2(K), ϕh|∂K ∈ C0(∂K), ϕh|e ∈ P3(e) ∀e ∈ ∂K,

∇ϕh|∂K ∈ C0(∂K), ∂neKϕh|e ∈ P1(e) ∀e ∈ ∂K
}
,

Next, for a given ϕh ∈ X̃h(K), we introduce two sets O1 and O2 of linear operators from

the local virtual space X̃h(K) into R:
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� O1 : contains linear operators evaluating ϕh at the NK vertices of K;

� O2 : contains linear operators evaluating ∇ϕh at the NK vertices of K.

Now, we decompose the bilinear form A(·, ·) as follows:

A(φ, ϕ) =
∑
K∈Th

AK(φ, ϕ) ∀φ, ϕ ∈ X, (2.3.1)

where

AK(φ, ϕ) =

∫
K

D2φ : D2ϕ ∀φ, ϕ ∈ H2(K). (2.3.2)

In a similar way, we can decompose the forms B(·; ·, ·) and Cskew(·, ·), with the following local
forms:

BK(ζ;ψ, ϕ) :=

∫
K

∆ζ curl ψ · ∇ϕ ∀ζ, ψ, ϕ ∈ H2(K). (2.3.3)

CK
skew(ψ, ϕ) =

1

2

∫
K

∂xψ ϕ− 1

2

∫
K

∂xϕψ ∀ψ, ϕ ∈ H2(K). (2.3.4)

Projection operators. The next step is to build some projector operators from the
local virtual space onto P2(K) to construct the discrete version of the local bilinear forms
and trilinear form along with the discrete load term. The �rst projector will be constructed
by using the local bilinear form (2.3.2). Indeed, for each polygon K, we de�ne the projector

ΠD
K : X̃h(K) → P2(K) ⊆ X̃h(K) as follows: for each ϕh ∈ X̃h(K), ΠD

Kϕh ∈ P2(K) is the
solution of the following local problem (on each polygon K):

AK(ΠD
Kϕh, q) = AK(ϕh, q) ∀q ∈ P2(K),

((ΠD
Kϕh, q))K = ((ϕh, q))K ∀q ∈ P1(K),

where ((φh, ϕh))K is de�ned as follows:

((φh, ϕh))K :=

NK∑
i=1

φh(vi)ϕh(vi) ∀φh, ϕh ∈ C0(∂K),

with vi, 1 ≤ i ≤ NK , being the vertices of K.
The following result establishes that the projector ΠD

K is computable using of the sets O1

and O2 (see [18]).

Lemma 2.3.1. The operator ΠD
K : X̃h(K) → P2(K) is explicitly computable for every ϕh ∈

X̃h(K), using only the information of the linear operators O1 and O2.

Next, we introduce, for each K ∈ Th, our local enhanced virtual space as follows:

Xh(K) :=
{
ϕh ∈ X̃h(K) : (ϕh − ΠD

Kϕh, q)0,K = 0, ∀q ∈ P2(K)
}
.

In the space Xh(K), we have the following properties (for further details, see [18]):

� the sets of linear operators O1 and O2 constitutes a set of degrees of freedom;
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� ΠD
K : Xh(K) → P2(K) is well-de�ned and it is computable using the information the of

degrees of freedom O1 and O2.

Now, for each K ∈ Ωh, we consider the L2-projection onto P2(K), de�ned as follows: for
each ϕ ∈ L2(K),Π2

Kϕ ∈ P2(K) is the unique function such that∫
K

qΠ2
Kϕ =

∫
K

qϕ ∀q ∈ P2(K). (2.3.5)

We observe that, using the de�nition of the local space Xh(K), for each ϕ ∈ Xh(K), the
polynomial function Π2

Kϕ ∈ P2(K) is fully computable. In fact, due to the particular property
appearing in the de�nition of space Xh(K), the right hand side in (2.3.5) is computable using
ΠD
Kϕ. Actually, it is easy to check that on the space Xh(K) the projectors Π2

Kϕ and ΠD
Kϕ are

the same operator. In fact: ∫
K

qΠ2
Kϕ =

∫
K

qΠD
Kϕ ∀q ∈ P2(K). (2.3.6)

Now, we will consider the following projection onto the polynomial space P1(K): we de�ne
Π1
K : L2(K) → P1(K), for each v ∈ L2(K) by∫

K

Π1
Kv · q =

∫
K

v · q ∀q ∈ P1(K). (2.3.7)

Using integration by parts, it is easy to see that for any ϕh ∈ Xh(K), the vector functions
Π1
Kcurl ϕh ∈ P1(K) and Π1

K∇ϕh ∈ P1(K) can be explicitly computed from the degrees of
freedom O1 and O2. In fact, for all K ∈ Th and for all ϕh ∈ Xh(K), using integration by parts
on the right hand side of (2.3.7) (with curl ϕh instead of v), we have∫

K

curl ϕh · q =

∫
K

ϕh rotq−
∫
∂K

ϕh(q · teK) ∀q ∈ P1(K)

= rotq

∫
K

(ΠD
Kϕh)−

∫
∂K

ϕh(q · teK) ∀q ∈ P1(K),

where we have used the de�nition of Π2
Kϕh and (2.3.6). The �rst term on the right hand side

above depends only on ΠD
Kϕh and this depends only on the values of the degrees of freedom

(see Lemma 2.3.1). The second term is an integral on the boundary of the element K, which
is fully computable. Similarly, we have that Π1

K∇ϕh is fully computable from the degrees of
freedom.

Also, we note that for each ϕh ∈ Xh(K) the projection function Π0
K∆ϕh ∈ P0(K) is com-

putable using the degrees of freedom O1 and O2. Indeed, for each ϕh ∈ Xh(K) and for all
q0 ∈ P0(K) we have ∫

K

q0Π
0
K∆ϕh =

∫
K

q0∆ϕh =

∫
∂K

q0 ∂nϕh,

from the equality above with have that

Π0
K∆ϕh =

1

|K|

∫
∂K

∂nϕh,

where |K| denotes the area of polygon K.
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Now, by combining the local spaces Xh(K) and incorporating the homogeneous Dirichlet
boundary conditions, we de�ne the global virtual space for the numerical approximation of
(2.2.8): for every decomposition Th of Ω into polygons K, we de�ne

Xh := {ϕh ∈ X : ϕh|K ∈ Xh(K)} .

The degrees of freedom for Xh are:

� OG1 : pointwise values of ϕh on all vertices of Th excluding the vertices on Γ;

� OG2 : pointwise values of ∇ϕh on all vertices of Th excluding the vertices on Γ.

2.3.2 Construction of the discrete forms

In this section, we will construct the discrete version of the continuous bilinear forms, the
trilinear form and the right hand side, using the projection operators introduced in Section 2.3.1.

First, let SKD (·, ·) be any symmetric positive de�nite bilinear form to be chosen as to satisfy:

c0A
K(ϕh, ϕh) ≤ SKD (ϕh, ϕh) ≤ c1A

K(ϕh, ϕh) ∀ϕh ∈ Xh(K), with ΠD
Kϕh = 0, (2.3.8)

with c0 and c1 positive constants independent of h and K.
Now, using the projector operator ΠD

K and the bilinear form SKD (·, ·), we introduce the
following computable discrete local bilinear form:

Ah,K(ψh, ϕh) := AK
(
ΠD
Kψh,Π

D
Kϕh

)
+ SKD

(
ψh − ΠD

Kψh, ϕh − ΠD
Kϕh

)
, (2.3.9)

as an approximation of the continuous bilinear form AK(·, ·) (cf. (2.3.1)).
We choose the following representation for the bilinear form SKD (·, ·) satisfying (2.3.8) (see

[18, 135]):

SKD (ψh, ϕh) := σKD

NK∑
i=1

[
ψh(vi)ϕh(vi) + h2vi∇ψh(vi) · ∇ϕh(vi)

]
∀ψh, ϕh ∈ Xh(K),

where v1, . . . ,vNK are the vertices of the element K, hvi corresponds to the maximum diameter
of the elements with vi as a vertex. The parameter σKD is a multiplicative factor to take into
account the h-scaling, for instance, in the numerical test we have taken σKD as the trace of the
matrix AK(ΠD

Kψh,Π
D
Kϕh) (cf. (2.3.9)).

For the approximation of the local trilinear form BK(·; ·, ·) (cf. (2.3.3)), we consider the
following computable form:

Bh,K(ζh;ψh, ϕh) :=

∫
K

[(
Π0
K∆ζh

) (
Π1
Kcurl ψh

)]
·Π1

K∇ϕh ∀ζh, ψh, ϕh ∈ Xh(K). (2.3.10)

For the approximation of the bilinear form CK
skew(·, ·) (cf. (2.3.4)), we consider the skew-

symmetric discrete local form:

Ch,K
skew(ψh, ϕh) :=

1

2

∫
K

Π2
K(∂xψh)Π

2
Kϕh −

1

2

∫
K

Π2
Kψh Π

2
K(∂xϕh). (2.3.11)

We recall that all the above forms are computable using only the degrees of freedom O1

and O2.
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Then, we de�ne the global bilinear forms and trilinear form as follows:

Ah : Xh ×Xh → R, Ah(ψh, ϕh) :=
∑
K∈Th

Ah,K(ψh, ϕh), (2.3.12)

Bh : Xh ×Xh ×Xh → R, Bh(ζh;ψh, ϕh) :=
∑
K∈Th

Bh,K(ζh;ψh, ϕh), (2.3.13)

Ch
skew : Xh ×Xh → R, Ch

skew(ψh, ϕh) :=
∑
K∈Th

Ch,K
skew(ψh, ϕh), (2.3.14)

for all ζh, ψh, ϕh ∈ Xh. Moreover, we observe that the forms Bh(·; ·, ·) and Ch
skew(·, ·) can be

extended to the whole X.
The next step consists in constructing a computable approximation of the right hand side

(2.2.6), using the sets of degrees of freedom O1 and O2. With this aim, for each element K we
de�ne the following term:

F h,K(ϕh) :=

∫
K

Π2
Kfϕh ≡

∫
K

f Π2
Kϕh ∀ϕh ∈ Xh(K),

where we have used the L2-projection operator (2.3.5). Thus, we introduce the following ap-
proximation for the functional de�ned in (2.2.6):

F h(ϕh) :=
∑
K∈Th

F h,K(ϕh) ∀ϕh ∈ Xh. (2.3.15)

The following result establishes the classical consistency and stability properties for the
discrete local bilinear forms.

Proposition 2.3.1. The local bilinear forms AK(·, ·), Ah,K(·, ·), CK
skew(·, ·) and C

h,K
skew(·, ·), de-

�ned in (2.3.2), (2.3.9), (2.3.4) and (2.3.11), respectively, on each element K satis�es the
following properties:

� Consistency: for all h > 0 and for all K ∈ Th, we have that

Ah,K(q, ϕh) = AK(q, ϕh) ∀q ∈ P2(K), ∀ϕh ∈ Xh(K), (2.3.16)

Ch,K
skew(q, ϕh) = CK

skew(q, ϕh) ∀q ∈ P2(K), ∀ϕh ∈ Xh(K), (2.3.17)

� Stability and boundedness: There exist positive constants α1 and α2, independent of h and
K, such that:

α1A
K(ϕh, ϕh) ≤ Ah,K(ϕh, ϕh) ≤ α2A

K(ϕh, ϕh) ∀ϕh ∈ Xh(K). (2.3.18)

Proof. The proof follows basically from the de�nition of the bilinear forms. We omit further
details and we refer to [18, 27].

The following lemma, which can be seen as the discrete version of Lemma 2.2.1, establishes
additional properties for the discrete forms.
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Lemma 2.3.2. There exist positive constants ĈBh, Ĉ2 and C1, independent of h, such that the
forms de�ned in (2.3.12)-(2.3.15) satis�es the following properties:

|Ah(ψh, ϕh)| ≤ α2 ∥ψh∥X∥ϕh∥X ∀ψh, ϕh ∈ Xh, (2.3.19)

Ah(ϕh, ϕh) ≥ α1 ∥ϕh∥2X ∀ϕh ∈ Xh, (2.3.20)

Bh(ζh;ψh, ϕh) ≤ ĈBh∥ζh∥X∥ψh∥X∥ϕh∥X ∀ζh, ψh, ϕh ∈ Xh, (2.3.21)

Bh(ζh;ϕh, ϕh) = 0, ∀ζh, ϕh ∈ Xh, (2.3.22)

|Ch
skew(ψh, ϕh)| ≤ Ĉ2 ∥ψh∥X∥ϕh∥X ∀ψh, ϕh ∈ Xh, (2.3.23)

Ch
skew(ϕh, ϕh) = 0, ∀ϕh ∈ Xh, (2.3.24)

|F h(ϕh)| ≤ C1∥f∥0,Ω∥ϕh∥X ∀ϕh ∈ Xh. (2.3.25)

Proof. Properties (2.3.19) and (2.3.20) follows from (2.3.18) and the ellipticity of the bilinear
form AK(·, ·). To prove property (2.3.21), we use the de�nition of the trilinear form Bh(·; ·, ·)
(cf. (2.3.13)) and Hölder inequality, we have

Bh(ζh;ψh, ϕh) =
∑
K∈Th

∫
K

[(
Π0
K∆ζh

) (
Π1
Kcurl ψh

)]
·Π1

K∇ϕh

≤
∑
K∈Th

∥Π0
K∆ζh∥0,K∥Π1

Kcurl ψh∥L4(K)∥Π1
K∇ϕh∥L4(K).

Using the continuity of the operator Π0
K with respect to the L2-norm and the continuity of the

operator Π1
K with respect to the L4-norm (see [35]), we have

Bh(ζh;ψh, ϕh) ≤ C
∑
K∈Th

∥∆ζh∥0,K∥curl ψh∥L4(K)∥∇ϕh∥L4(K).

Now, applying the Hölder inequality (for sequences), we obtain

Bh(ζh;ψh, ϕh) ≤ C
( ∑
K∈Th

∥∆ζh∥20,K
) 1

2
( ∑
K∈Th

∥curl ψh∥4L4(K)

) 1
4
( ∑
K∈Th

∥∇ϕh∥4L4(K)

) 1
4

≤ C∥∆ζh∥0,Ω∥curl ψh∥L4(Ω)∥∇ϕh∥L4(Ω).

Then, by Sobolev embedding theorem, it holds that

Bh(ζh;ψh, ϕh) ≤ ĈBh∥ζh∥X∥ψh∥X∥ϕh∥X ,

where ĈBh is a constant independent of h.
Finally, (2.3.22)-(2.3.25) follows from the de�nition of the corresponding forms. We conclude

the proof.

2.3.3 Discrete problem and �xed-point strategy

In this section, we will write the discrete VEM formulation to solve the quasi-geostrophic
equations presented in (2.2.8). Our scheme will be based on the discrete forms and the results



2.3. The virtual element scheme 21

introduced in the previous section. Then, we will analyze a point-�xed strategy to establish
the existence and uniqueness of the discrete virtual scheme.

The discrete problem reads as follows: �nd ψh ∈ Xh, such that

Re−1Ah(ψh, ϕh) +Bh(ψh;ψh, ϕh)− Ro−1Ch
skew(ψh, ϕh) = Ro−1F h(ϕh) ∀ϕh ∈ Xh, (2.3.26)

where Ah(·, ·) and Ch
skew(·, ·) are the discrete bilinear forms de�ned in (2.3.12) and (2.3.14),

respectively, Bh(·; ·, ·) is the discrete trilinear form de�ned in (2.3.13), and F h(·) is the functional
introduced in (2.3.15).

In order to prove well-posedness of problem (2.3.26), we are going to use, as in the continuous
case, a �xed-point strategy. Indeed, given ζh ∈ Xh, we de�ne the following operator

T h : Xh −→ Xh

ζh 7−→ T h(ζh) = ψh,

where ψh is the solution of the following linear problem: �nd ψh ∈ Xh such that

Qζh(ψh, ϕh) = Ro−1F h(ϕh) ∀ϕh ∈ Xh, (2.3.27)

where the bilinear form Qζh(·, ·) is given by

Qζh(ψh, ϕh) := Re−1Ah(ψh, ϕh) +Bh(ζh;ψh, ϕh)− Ro−1Ch
skew(ψh, ϕh).

The following lemma establishes that the operator T h is well-de�ned.

Lemma 2.3.3. Given ζh ∈ Xh, there exists a unique ψh ∈ Xh such that T h(ζh) = ψh.

Proof. We are going to use the Lax-Milgram Theorem to prove that problem (2.3.27) is well-
posed. Indeed, using the properties (2.3.19), (2.3.21) and (2.3.23), we have that Qζh(·, ·) is
bounded with a positive constant independent of h. On the other hand, for each ϕh ∈ Xh,
using (2.3.22) and (2.3.24), we have

Qζh(ϕh, ϕh) = Re−1Ah(ϕh, ϕh) +Bh(ζh;ϕh, ϕh)− Ro−1Ch
skew(ϕh, ϕh)

= Re−1Ah(ϕh, ϕh)

≥ Re−1α1∥ϕh∥2X ,

where (2.3.20) has been used in the last inequality. Thus, by a direct application of the Lax-
Milgram Theorem, we conclude that problem (2.3.27) has a unique solution ψh ∈ Xh. More-
over, from the de�nition of the discrete problem (cf. (2.3.27)), properties (2.3.22), (2.3.24)
and (2.3.25), the following estimate holds

∥ψh∥X ≤ C1α
−1
1 Ro−1Re ∥f∥0,Ω.

Therefore, operator T h is well-de�ned.

Now, we introduce the following set

Nh := {ϕh ∈ Xh : ∥ϕh∥X ≤ R} ,

where R := C1α
−1
1 Ro−1Re ∥f∥0,Ω. As an immediate consequence of the previous lemma, we

have that T h(Nh) ⊆ Nh. Note that our discrete virtual scheme (2.3.26) is well-posed if only if
operator T h has a unique �xed point in Nh.

The following lemma establishes that under some assumption on the data, the operator T h

is a contraction mapping in Nh.
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Lemma 2.3.4. Assume that
ĈBhC1Ro

−1Re2∥f∥0,Ω
α2
1

< 1. (2.3.28)

Then, T h is a contraction mapping in Nh.

Proof. Let ζ1h, ψ
1
h, ζ

2
h, ψ

2
h ∈ Nh, such that T

h(ζ1h) = ψ1
h and T

h(ζ2h) = ψ2
h, then from the de�nition

of the operator T h(·), we have

Re−1Ah(ψ1
h, ϕh) +Bh(ζ1h;ψ

1
h, ϕh)− Ro−1Ch

skew(ψ
1
h, ϕh) = Ro−1F h(ϕh) ∀ϕh ∈ Nh, (2.3.29)

Re−1Ah(ψ2
h, ϕh) +Bh(ζ2h;ψ

2
h, ϕh)− Ro−1Ch

skew(ψ
2
h, ϕh) = Ro−1F h(ϕh) ∀ϕh ∈ Nh. (2.3.30)

Subtracting (2.3.30) from (2.3.29), due to the properties of the bilinear forms Ah(·, ·) and
Ch

skew(·, ·), we have that

Re−1Ah(ψ1
h − ψ2

h, ϕh) + [Bh(ζ1h;ψ
1
h, ϕh)−Bh(ζ2h;ψ

2
h, ϕh)]− Ro−1Ch

skew(ψ
1
h − ψ2

h, ϕh) = 0,

for all ϕh ∈ Nh. Now, taking ϕh := ψ1
h − ψ2

h in the above equality, we have that Ch
skew(·, ·)

vanishes (cf. (2.3.24)). Thus, we obtain

Re−1Ah(ψ1
h − ψ2

h, ψ
1
h − ψ2

h) +Bh(ζ1h;ψ
1
h, ψ

1
h − ψ2

h) −Bh(ζ2h;ψ
2
h, ψ

1
h − ψ2

h) = 0.

Then, adding and subtracting ψ2
h in the second term of the left hand above, we get

0 =Re−1Ah(ψ1
h − ψ2

h, ψ
1
h − ψ2

h) +Bh(ζ1h;ψ
1
h − ψ2

h, ψ
1
h − ψ2

h) +Bh(ζ1h;ψ
2
h, ψ

1
h − ψ2

h)

−Bh(ζ2h;ψ
2
h, ψ

1
h − ψ2

h)

=Re−1Ah(ψ1
h − ψ2

h, ψ
1
h − ψ2

h) +Bh(ζ1h;ψ
2
h, ψ

1
h − ψ2

h)−Bh(ζ2h;ψ
2
h, ψ

1
h − ψ2

h)

=Re−1Ah(ψ1
h − ψ2

h, ψ
1
h − ψ2

h) +Bh(ζ1h − ζ2h;ψ
2
h, ψ

1
h − ψ2

h),

where we have used (2.3.22). Then, we have

Re−1Ah(ψ1
h − ψ2

h, ψ
1
h − ψ2

h) = −Bh(ζ1h − ζ2h;ψ
2
h, ψ

1
h − ψ2

h),

then applying the Cauchy-Schwarz inequality, (2.3.20) and (2.3.21), we obtain

Re−1α1∥ψ1
h − ψ2

h∥2X ≤ ĈBh∥ψ2
h∥X∥ζ1h − ζ2h∥X∥ψ1

h − ψ2
h∥X ,

using the fact that ψ2
h ∈ Nh, we obtain

∥ψ1
h − ψ2

h∥X ≤ ĈBhC1Ro
−1Re2∥f∥0,Ω
α2
1

∥ζ1h − ζ2h∥X .

Thus, according to assumption (2.3.28), we have that T h is a contraction mapping. The proof
is complete.

The following result is a direct consequence of Lemma 2.3.4 and the Banach �xed-point
Theorem.

Theorem 2.3.1. If

λh :=
ĈBhC1Ro

−1Re2∥f∥0,Ω
α2
1

< 1, (2.3.31)

there exists a unique ψh ∈ Nh solution to problem (2.3.26), which satis�es the following con-
tinuous dependence

∥ψh∥X ≤ C1Ro
−1Re ∥f∥0,Ω
α1

.
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2.4 Convergence analysis

In this section, we will analyze the convergence properties of the discrete virtual element
scheme presented in Section 2.3.3. In the forthcoming analysis, we will make the following
assumptions for the polygonal mesh Th: there exists a real number CTh > 0 such that, for every
h and every K ∈ Th we have

A1 : K ∈ Th is star-shaped with respect to every point of a ball of radius CThhK ;

A2 : the ratio between the shortest edge and the diameter hK of K is larger than CTh .

We introduce the following broken Hℓ-seminorm, for each integer ℓ ≥ 0:

|ϕ|ℓ,h :=
( ∑

K∈Th

|ϕ|2ℓ,K
)1/2

,

which is well-de�ned for every ϕ ∈ L2(Ω) such that ϕ|K ∈ Hℓ(K) for all polygon K ∈ Th.
The following approximation results will play a relevant role in our error analysis (see

[18, 38, 54]).

Proposition 2.4.1. Assume A2 is satis�ed, then there exists a constant C > 0, such that for
every ϕ ∈ Hδ(K), there exists ϕπ ∈ P2(K), such that

|ϕ− ϕπ|ℓ,K ≤ Chδ−ℓK |ϕ|δ,K , 0 ≤ δ ≤ 3, ℓ = 0, 1, . . . , [δ],

where [δ] denotes the largest integer equal to or smaller than δ ∈ R.

Proposition 2.4.2. Assume that A1 − A2 are satis�ed. Then, for each ϕ ∈ H2+s(Ω), with
s ∈ (1/2, 1] there exist ϕI ∈ Xh and C > 0, independent of h, such that

∥ϕ− ϕI∥X ≤ Chs|ϕ|2+s,Ω.

Proof. The proof follows repeating the arguments from [38, Proposition 4.2] (see also [18,
Proposition 3.1]).

We will also use the following approximation property (see [35]):

Lemma 2.4.1. Let K ∈ Th, and δ, p two real numbers such that 0 ≤ δ ≤ 1 and 1 < p ≤ ∞.
Then, there exists a constant C > 0, independent of hK, such that for every v ∈ Wδ

p(K)

|v −Π1
Kv|Lp(K) ≤ ChδK |v|Wδ

p(K).

Now, we start with the following bound.

Proposition 2.4.3. Let f ∈ L2(Ω) and let F (·) and F h(·) be the functionals de�ned in (2.2.6)
and (2.3.15), respectively. Then, we have the following estimate:

∥F − F h∥X′
h
:= sup

ϕh∈Xh
ϕh ̸=0

|F (ϕh)− F h(ϕh)|
∥ϕh∥X

≤ Ch2∥f∥0,Ω.
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Proof. The proof follows from the de�nition of the functionals F (·) and F h(·), together with
approximation properties of the projector Π2

K .

The next step is to establish two technical results for the trilinear forms B(·; ·, ·) and
Bh(·; ·, ·). We begin with the following lemma.

Lemma 2.4.2. Let v ∈ H2+s(Ω) ∩X, with s ∈ (1/2, 1]. Then for all w ∈ X, we have that

|B(v; v, w)−Bh(v; v, w)| ≤ Chs(∥v∥1+s,Ω + ∥v∥X)∥v∥2+s,Ω∥w∥X .

Proof. Let v ∈ H2+s(Ω)∩X and w ∈ X, then adding and subtracting suitable terms and using
orthogonality properties of the projectors Π0

K and Π1
K , we have that

B(v; v, w)−Bh(v; v, w) =
∑
K∈Th

∫
K

[
∆v curl v · ∇w −

(
Π0
K∆vΠ

1
Kcurl v

)
·Π1

K∇w
]

=
∑
K∈Th

∫
K

∆v curl v ·
(
∇w −Π1

K∇w
)

+
∑
K∈Th

∫
K

(
∆v
(
curl v −Π1

Kcurl v
))

·Π1
K∇w

+
∑
K∈Th

∫
K

((
∆v − Π0

K∆v
)
Π1
Kcurl v

)
·Π1

K∇w

=: T1 + T2 + T3.

(2.4.1)

We will bound the terms in the last equality. Applying Hölder inequality and approximation
properties of projector Π1

K (see Lemma 2.4.1), we bound the term T1 as follows

T1 ≤
∑
K∈Th

C∥∆v∥L4(K)∥curl v∥L4(K)∥∇w −Π1
K∇w∥0,K

≤
∑
K∈Th

C∥∆v∥L4(K)∥curl v∥L4(K)Ch|∇w|1,K ,

then using Hölder inequality (for sequences) and the fact that Hs(Ω) ↪→ L4(Ω), we obtain that

T1 ≤ Ch
( ∑

K∈Th

∥∆v∥4L4(K)

) 1
4
( ∑

K∈Th

∥curl v∥4L4(K)

) 1
4
( ∑

K∈Th

|w|22,K
) 1

2

≤ Ch∥∆v∥L4(Ω)∥curl v∥L4(Ω)∥w∥X
≤ Ch∥∆v∥s,Ω∥curl v∥s,Ω∥w∥X
≤ Ch∥v∥2+s,Ω∥v∥1+s,Ω∥w∥X .

(2.4.2)

Now, for the term T2, we use again Hölder inequality, approximation properties of projector
Π1
K in Sobolev spaces (see Lemma 2.4.1), and continuity of Π1

K with respect L4-norm (see [35]),
to get

T2 ≤
∑
K∈Th

C∥∆v∥0,K∥curl v −Π1
Kcurl v∥L4(K)∥Π1

K∇w∥L4(K)

≤
∑
K∈Th

C∥∆v∥0,Khs∥curl v∥Ws
4(K)∥∇w∥L4(K).
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Now, using again Hölder inequality (for sequences) and Sobolev embeddings Hs(Ω) ↪→ L4(Ω)
and H1+s(Ω) ↪→ Ws

4(Ω), we obtain that

T2 ≤ Chs
( ∑

K∈Th

∥∆v∥20,K
) 1

2
( ∑

K∈Th

∥curl v∥4Ws
4(K)

) 1
4
( ∑

K∈Th

∥∇w∥4L4(K)

) 1
4

≤ Chs∥∆v∥0,Ω|curl v|Ws
4(Ω)∥∇w∥L4(Ω)

≤ Chs∥v∥X |curl v|1+s,Ω∥w∥X
≤ Chs∥v∥X∥v∥2+s,Ω∥w∥X .

(2.4.3)

We continue with the term T3. We use Hölder inequality and the continuity of the projector
Π1
K with respect L4-norm and the approximation property for projector Π0

K , it holds that

T3 ≤
∑
K∈Th

C∥∆v − Π0
K∆v∥0,K∥Π1

Kcurl v∥L4(K)∥Π1
K∇w∥L4(K)

≤
∑
K∈Th

Chs∥∆v∥s,K∥curl v∥L4(K)∥∇w∥L4(K).

By employing the Hölder inequality (for sequences) and Sobolev embedding theorem, we have
that

T3 ≤ Chs∥v∥2+s,Ω|v|1+s,Ω∥w∥X . (2.4.4)

Finally, the proof follows from the estimates (2.4.2), (2.4.3), (2.4.4) and (2.4.1).

Now, we state the second technical result.

Lemma 2.4.3. For all ζ, φ, ϕ ∈ X we have that

|Bh(φ;φ, ϕ)−Bh(ζ; ζ, ϕ)| ≤ ĈBh (∥ζ∥X∥ϕ∥X + ∥φ− ζ + ϕ∥X(∥φ∥X + ∥ζ∥X)) ∥ϕ∥X .

Proof. Let ζ, φ, ϕ ∈ X. Then, adding and subtracting suitable terms, using the trilineality of
the form Bh(·; ·, ·) and the property (2.3.22), we have

Bh(φ;φ, ϕ)−Bh(ζ; ζ, ϕ) = Bh(φ;φ− ζ, ϕ) +Bh(φ− ζ; ζ, ϕ)

= Bh(φ;φ− ζ + ϕ, ϕ)−Bh(φ;ϕ, ϕ) +Bh(φ− ζ + ϕ; ζ, ϕ)−Bh(ϕ; ζ, ϕ)

= Bh(φ;φ− ζ + ϕ, ϕ) +Bh(φ− ζ + ϕ; ζ, ϕ)−Bh(ϕ; ζ, ϕ).

Thus, the proof follows from (2.3.21).

The following theorem provides the rate of convergence of our virtual element scheme.

Theorem 2.4.1. Let ψ and ψh be the unique solutions of problem (2.2.8) and problem (2.3.26),
respectively. Then, there exists a positive constant C, independent of h, such that

∥ψ − ψh∥X ≤ C hsG(f ; Re,Ro, λ, λh),

where s ∈ (1/2, 1] is such that ψ ∈ H2+s(Ω)∩X (cf. Theorem 2.2.2) and G is a suitable function
independent of h.
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Proof. Let ψI ∈ Xh be the interpolant of ψ, such that Proposition 2.4.2 holds true. We set
wh := ψh − ψI . Thus,

∥ψ − ψh∥X ≤ ∥ψ − ψI∥X + ∥wh∥X . (2.4.5)

The bound of �rst term on the right hand side above follows from Proposition 2.4.2. Thus, we
bound the second term. In virtue to the properties (2.3.20), (2.3.21) and (2.3.22), we have that

Re−1α1∥wh∥2X ≤ Re−1Ah(wh, wh) = Re−1Ah(ψh, wh)− Re−1Ah(ψI , wh)

= Re−1Ah(ψh, wh) +Bh(ψh;wh, wh)− Ro−1Ch
skew(wh, wh)− Re−1Ah(ψI , wh)

=
[
Re−1Ah(ψh, wh) +Bh(ψh;ψh, wh)− Ro−1Ch

skew(ψh, wh)
]

−Bh(ψh;ψI , wh) + Ro−1Ch
skew(ψI , wh)− Re−1Ah(ψI , wh)

= Ro−1F h(wh)− Re−1Ah(ψI , wh)−Bh(ψh;ψI , wh) + Ro−1Ch
skew(ψI , wh),

where we have used the de�nition of the discrete scheme (2.3.26). Now, adding and subtracting
the term Ro−1F (wh) on the right hand side above, and using the de�nition of the continuous
problem (cf. (2.2.8)), we get

Re−1α1∥wh∥2X ≤ Ro−1
[
F h(wh)− F (wh)

]
+Re−1

[
A(ψ,wh)− Ah(ψI , wh)

]
+ [B(ψ;ψ,wh)−Bh(ψh;ψI , wh)] + Ro−1

[
Cskew(ψ,wh)− Ch

skew(ψI , wh)
]

≤ C Ro−1∥F − F h∥X′
h
∥wh∥X +Re−1

[
A(ψ,wh)− Ah(ψI , wh)

]
+
[
B(ψ;ψ,wh)−Bh(ψh;ψI , wh)

]
+Ro−1

[
Cskew(ψ,wh)− Ch

skew(ψI , wh)
]

=: TF + TA + TB + TC .

(2.4.6)

Now, we bound each term on the right hand side above. First, the term TF can be easily
bounded by using Proposition 2.4.3. Then, we estimate the term TA as follows. Adding and
subtracting ψπ ∈ P2(K) such that Proposition 2.4.1 holds true, and using the consistency of
the bilinear form Ah,K(·, ·) (cf. (2.3.16)), we have that

TA = Re−1
∑
K∈Th

[
AK(ψ − ψπ, wh)− Ah,K(ψI − ψπ, wh)

]
≤ CRe−1hs∥ψ∥2+s,Ω∥wh∥X ,

(2.4.7)

where we have used the continuity of the bilinear form Ah,K(·, ·), Propositions 2.4.1 and 2.4.2
and Cauchy-Schwarz inequality. Analogously, the term TC can be estimated by using (2.3.17),
as follows

TC = Ro−1
∑
K∈Th

[
CK

skew(ψ − ψπ, wh)− Ch,K
skew(ψI − ψπ, wh)

]
≤ CRo−1hs∥ψ∥2+s,Ω∥wh∥X .

(2.4.8)

The next step is to bound the term TB. We proceed as follows

TB =
[
B(ψ;ψ,wh)−Bh(ψh;ψh, wh)

]
+
[
Bh(ψh;ψh, wh)−Bh(ψh;ψI , wh)

]
=
[
B(ψ;ψ,wh)−Bh(ψh;ψh, wh)

]
+ [Bh(ψh;wh, wh)]

= B(ψ;ψ,wh)−Bh(ψh;ψh, wh),

(2.4.9)
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where we have used (2.3.22) to obtain the last equality. Now, we add and subtract the term
Bh(ψ;ψ,wh), then we use Lemmas 2.4.2 and 2.4.3 to obtain that

TB =
[
B(ψ;ψ,wh)−Bh(ψ;ψ,wh)

]
+
[
Bh(ψ;ψ,wh)−Bh(ψh;ψh, wh)

]
≤ C hs(∥ψ∥X + ∥ψ∥1+s,Ω)∥ψ∥2+s,Ω∥wh∥X
+ ĈBh (∥ψh∥X∥wh∥X + Chs∥ψ∥2+s,Ω(∥ψ∥X + ∥ψh∥X)) ∥wh∥X ,

(2.4.10)

where we have used that wh = ψh − ψI and then Proposition 2.4.2.
Therefore, from (2.4.6), using (2.4.7)-(2.4.10), we obtain

Re−1α1∥wh∥X ≤ C Ro−1 h2∥f∥0,Ω + C(Re−1 +Ro−1)hs∥ψ∥2+s,Ω
+ C hs(∥ψ∥X + ∥ψ∥1+s,Ω)∥ψ∥2+s,Ω
+ ĈBh∥ψh∥X∥wh∥X + ĈBh Ch

s(∥ψ∥X + ∥ψh∥X)∥ψ∥2+s,Ω.

From the inequality above, we get

Re−1α1(1− ĈBhReα
−1
1 ∥ψh∥X)∥wh∥X ≤ C Ro−1h2∥f∥0,Ω

+ C(Re−1 +Ro−1)hs∥ψ∥2+s,Ω + C hs(∥ψ∥X + ∥ψ∥1+s,Ω)∥ψ∥2+s,Ω
+ ĈBh Ch

s(∥ψ∥X + ∥ψh∥X)∥ψ∥2+s,Ω.
(2.4.11)

Next, from (2.3.31) and the fact that ψh ∈ Nh, it holds that

1− ĈBh∥ψh∥X
Re−1α1

≥ 1− ĈBh C1 Re
2 Ro−1∥f∥0,Ω
α2
1

= 1− λh > 0. (2.4.12)

Therefore, from (2.4.11), (2.4.12) and Theorem 2.3.1, we get

∥wh∥X ≤ C Re Ro−1 h2 ∥f∥0,Ω
α1 (1− λh)

+
C Re (Re−1 +Ro−1)hs

α1 (1− λh)
∥ψ∥2+s,Ω

+
C Re hs

α1 (1− λh)
(∥ψ∥X + ∥ψ∥1+s,Ω)∥ψ∥2+s,Ω

+
ĈBh C Re hs

α1 (1− λh)
(∥ψ∥X + ∥ψh∥X)∥ψ∥2+s,Ω

≤ C hsG(f ; Re,Ro, λ, λh),

(2.4.13)

where we have also used Theorem 2.2.2. Finally, the proof follows from (2.4.5), (2.4.13) and
Proposition 2.4.2.

2.5 Numerical results

In this section, we present four numerical experiments, to test the behavior of the pro-
posed VEM discretization (2.3.26) and in order to verify the theoretical results established in
Section 2.4.

We have tested the virtual scheme by using di�erent families of polygonal meshes (cf. Fig-
ure 2.1). For reasons of brevity, we do not report the results obtained with all meshes for all
test problems. The non reported results are in accordance with the ones shown.
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� T 1
h : Sequence of CVT (Centroidal Voronoi Tessellation);

� T 2
h : Trapezoidal meshes;

� T 3
h : Distorted concave rhombic quadrilaterals;

� T 4
h : Uniform triangular meshes.

Figure 2.1: Sample meshes. T 1
h , T 2

h , T 3
h and T 4

h (from left to right).

In order to test the convergence of the proposed scheme, we introduce the following com-
putable quantities:

ei(ψ) := |ψ − ΠD
Kψh|i,h, i = 0, 1, 2.

We will compute experimental rates of convergence for each individual error as follows:

ri(ψ) :=
log(ei(ψ)/e

′
i(ψ))

log(h/h′)
, i = 0, 1, 2.

where h, h′ denote two consecutive mesh sizes with their respective errors ei and e′i.
For each test to solve the resulting nonlinear system, we used the Newton method with

maximum 10 iterations, a tolerance Tol= 1e − 8 and we take ψ0
h = 0 as an initial guess;

moreover, we have taken the Reynolds number as Re = 1.667 and the Rossby number as
Ro = 1e − 4 (see [95]). Finally, we consider Ω := (0, 1)2 as computational domain in the �rst
three examples and an L-shaped domain in the last example.

2.5.1 Test 1: Smooth solution

In this numerical test, we take the load term in such a way that the analytical solution of
the quasi-geostrophic equations (2.2.1) is given by:

ψ(x, y) :=
1

π2
sin2 (πx) sin2(πy)ex

2+y2 .

We report in Table 2.1 the convergence history of our virtual scheme on the meshes T 1
h . The

table includes the number of degrees of freedom (dofs), the discrete errors ei(ψ), the convergence
rates ri(ψ) for i = 0, 1, 2, and the number of iterations (iter) used by the method of Newton to
achieve tolerance at each level of re�nement.
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dofs h e0(ψ) r0(ψ) e1(ψ) r1(ψ) e2(ψ) r2(ψ) iter
294 1/8 4.214341e-2 � 1.338770e-1 � 3.676844e-1 � 3
1371 1/16 1.100219e-2 1.937 4.993576e-2 1.422 1.924777e-1 0.933 3
5796 1/32 2.329921e-3 2.239 1.229111e-2 2.022 9.401329e-2 1.033 3
23874 1/64 5.576055e-4 2.062 3.109190e-3 1.983 4.633333e-2 1.020 3
96855 1/128 1.089853e-4 2.355 7.895256e-4 1.977 2.308295e-2 1.005 3

Table 2.1: Test 1. Errors and experimental rates for the stream-function ψh, using the meshes
T 1
h .

We observe that the asymptotic O(h) decay of the discrete error e2(ψ) observed for the
stream-function con�rms the optimal convergence predicted by Theorem 2.4.1. It can be also
seen that the errors e0(ψ) and e1(ψ) decay much faster. However, we have not proved the higher
order in these cases. The table also shows that a maximum of four iterations are required for
the Newton method.

Sample approximate solutions generated with the virtual method on a coarse mesh are
portrayed in Figure 2.2.
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Figure 2.2: Test 1. Exact and approximate solutions ψ and ψh, the streamlines of ψh and the
velocity �eld uh := curl ψh (top left, top right, bottom left, bottom right, respectively), using
the VEM method (2.3.26) with T 1

h , h = 1/32.
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2.5.2 Test 2: Solution with western boundary layer

In this numerical example, we solve the quasi-geostrophic equations (2.2.1) by taking the
load term in such a way that the analytical solution is given by:

ψ(x, y) =
1

(20π)2
(
(1− x)

(
1− e−20x

)
sin(πy)

)2
.

We observe that in this case the solution has a boundary layer on the left hand side.
In Table 2.2 we report the convergence history of our virtual scheme on the meshes T 2

h .
The table includes the number of degrees of freedom (dofs), the discrete errors ei(ψ), and the
convergence rates ri(ψ) for i = 0, 1, 2. Once again, the expected order of convergence for the
discrete errors e2(ψ) is reached.

dofs h e0(ψ) r0(ψ) e1(ψ) r1(ψ) e2(ψ) r2(ψ) iter
147 1/8 7.600646e-5 � 1.549666e-3 � 2.834095e-2 � 3
675 1/16 1.616079e-5 2.233 4.688010e-4 1.724 1.390167e-2 1.027 2
2883 1/32 2.976015e-6 2.441 1.110449e-4 2.077 7.254667e-3 0.938 2
11907 1/64 6.202604e-7 2.262 2.706962e-5 2.036 3.804474e-3 0.931 2
48387 1/128 1.451048e-7 2.095 6.730940e-6 2.007 1.938996e-3 0.972 3

Table 2.2: Test 2. Errors and experimental rates for the stream-function ψh, using the meshes
T 2
h .

In addition, in Figure 2.3 we display the stream-function (exact and numerical solution),
the streamlines of ψh and the approximate velocity �eld.

2.5.3 Test 3: Solution with vortex in the top-right corner of the do-

main

In this numerical example, we solve the quasi-geostrophic equations (2.2.1) by taking the
load term in such a way that the analytical solution is given by:

ψ(x, y) =
1

4π2

(
1− cos

(2π(eR1x − 1)

eR1 − 1

))(
1− cos

(2π(eR2y − 1)

eR2 − 1

))
.

In this experiment it is expected to observe a counter-clockwise rotating vortex with center
(xc, yc) which depends on the values of R1 and R2. The coordinates of the center of the vortex
are given by:

xc =
1

R1

log
(eR1 + 1

2

)
yc =

1

R2

log
(eR2 + 1

2

)
.

In particular, we have chosen R1 = R2 = 4, then the center of the vortex is located at the
top-right corner of the domain. More precisely, (xc, yc) ≈ (0.83125, 0.83125).

We proceed to study the accuracy of our VEM scheme by solving the discrete problem
on a sequence of polygonal meshes T 3

h . Once again, we compute the discrete errors ei(ψ) for
i = 0, 1, 2. The error history is collected in Table 2.3, which indicates that the scheme, as
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Figure 2.3: Test 2. Exact and approximate solutions ψ, ψh, the streamlines of ψh and the
velocity �eld uh := curl ψh and (top left, top right, bottom left, bottom right, respectively)
using the VEM method (2.3.26) with T 2

h , h = 1/64.

dofs h e0(ψ) r0(ψ) e1(ψ) r1(ψ) e2(ψ) r2(ψ) iter
123 1/4 1.153577e-2 � 2.116982e-1 � 4.17475e+0 � 4
531 1/8 9.705065e-3 0.249 1.328881e-1 0.671 3.21654e+0 0.376 3
2211 1/16 2.444361e-3 1.989 4.017754e-2 1.725 1.72708e+0 0.897 3
9027 1/32 4.937103e-4 2.307 9.985092e-3 2.008 8.549397e-1 1.014 4
36483 1/64 1.118995e-4 2.141 2.479913e-3 2.009 4.275213e-1 0.999 4

Table 2.3: Test 3. Errors and experimental rates for the stream-function ψh, using the meshes
T 3
h .

predicted by the theory, converges with an O(h) in the discrete error e2(ψ). The table also
shows that a maximum of four iterations are required for the Newton method.

In Figure 2.4 we display the stream-function (exact and numerical solution) and the ap-
proximate velocity �eld.
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Figure 2.4: Test 3. Exact and approximate solutions ψ, ψh (top) and the velocity �eld uh :=
curl ψh (bottom) using the VEM method (2.3.26) with T 3

h , h = 1/32.

2.5.4 Test 4: L-shaped domain

Finally, we solve the quasi-geostrophic equations (2.2.1) on an L-shape domain: Ω :=
(−1, 1)2 \ ([0, 1) × (−1, 0]). We take the right hand side term and non-homogeneous Dirichlet
boundary conditions in such a way that the exact solution in polar coordinates is given by

ψ(r, θ) = r5/3 sin
(5
3
θ
)
.

The analytical solution contains a singularity at the re-entrant corner of Ω; here, we have
ψ ∈ H8/3−ε(Ω) for all ε > 0.

Table 2.4 shows the errors and experimental convergence rates of our virtual scheme on the
meshes T 4

h . Since the analytical solution is singular, we are not going to obtain linear (in H2)
and quadratic (in H1 and L2) order of convergences as in the previous examples. More precisely,
according to the regularity of ψ, we expect an order of convergence in H2 as O(h2/3).

It can be seen from Table 2.4 that the expected order of convergence for the discrete errors
e2(ψ) is obtained. We also observe that the errors e0(ψ) and e1(ψ) decay much faster.

Finally, Figure 2.5 shows the stream-function (exact and numerical solution).
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dofs h e0(ψ) r0(ψ) e1(ψ) r1(ψ) e2(ψ) r2(ψ) iter
483 1/8 2.985997e-4 � 6.677776e-3 � 2.614276e-1 � 4
2115 1/16 1.448822e-4 1.043 2.446762e-3 1.448 1.643765e-1 0.669 4
8835 1/32 6.100395e-5 1.247 9.069247e-4 1.431 1.040009e-1 0.660 4
36099 1/64 2.538614e-5 1.264 3.411994e-4 1.410 6.577727e-2 0.660 4
145923 1/128 1.063002e-5 1.255 1.316359e-4 1.374 4.155790e-2 0.662 4

Table 2.4: Test 4. Errors and experimental rates for the stream-function ψh, using the meshes
T 4
h .

Figure 2.5: Test 4. Exact and approximate solutions ψ, ψh (left and right, respectively) using
the VEM method (2.3.26) with T 4

h , h = 1/16.



Chapter 3

Virtual element methods for a

stream-function formulation of the Oseen

equations

3.1 Introduction

The numerical solution of the time-dependent Navier�Stokes equations is still a great chal-
lenge of computational �uid dynamics. Using time discretization and linearization, the gener-
alized Oseen problem arises as an important subproblem. Di�erent formulation and discretiza-
tions have been proposed and analyzed in the last years for the Oseen equations; see for instance
[8, 13, 23, 24, 25, 52, 61, 78, 73, 94] and the references therein.

The aim of the present chapter is to introduce and analyze conforming virtual element meth-
ods (VEM) to solve the Oseen equations on polygonal simply connected domains, formulated in
terms of the stream-function of the velocity �eld. We observe that it corresponds to a fourth-
order PDE. Thus, a conforming discretization requires globally C1 continuity. Among the
important advantages of VEM, in this work, we will exploit the possibility of easily implement
global discrete spaces of H2(Ω) (see [58, 77]) to solve the Oseen problem.

The VEM introduced in [27] is a recent generalization of the �nite element method that
allows to use general polygonal/polyhedral meshes. The method has been applied successfully
in a large range of problems in �uid mechanics; see for instance [17, 34, 35, 41, 59, 60, 64, 84,
98, 117, 118, 154, 164], where Stokes, Brinkman, Stokes�Darcy, Navier�Stokes and Boussinesq
equations have been developed.

Recently in [133], it has been presented a C1 VEM method for the Brinkman problem
written in term of the stream-function. In this contribution, we will extend these results to the
generalized Oseen problem, where an additional term is presented in the momentum equation.
There are several advantages of utilizing the stream-function formulation for �uid �ow problems:
there is only one scalar variable, the incompressible condition is satis�ed automatically, the
stream-function is one of the most useful tools in �ow visualization. Moreover, further variables
of interest, such as the velocity, the �uid vorticity and the pressure, can be easily obtained from
the VEM discrete stream-function. In fact, we will show that we compute the velocity by
a simple postprocess, and we recover the �uid pressure by solving a primal formulation of a
second order elliptic problem with right hand side coming from the discrete stream-function
(see [133, 115]). We note that there are other procedures to recover �uid pressure. For instance,

34
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in [71] has been presented an algorithm for pressure recovery which is based on a mixed �nite
element discretization with inf-sup stable pairs. In addition, we will propose a novel strategy
to recover the �uid vorticity, which is key in several applications [89, 46, 12], from the virtual
element stream-function solution with the help of a proper polynomial projector.

This chapter is concerned with a non-symmetric VEM discretization of arbitrary order
k ≥ 2 for the Oseen equations formulated in terms of the stream-function, which will be
analyzed using the Lax-Milgram Theorem and we will show well-posedness provided a CFL-
type condition is satis�ed (cf. (3.3.22)). Under standard assumptions on the polygonal meshes,
we establish optimal order error estimates in H2. Moreover, we show that velocity, vorticity
and pressure can be recovered (cf. Section 3.5). We also derive error estimates for these �elds.
In particular, under the assumptions that the family of polygonal meshes is quasi-uniform and
that the continuous solutions are su�ciently smooth (pressure and stream-function), we write
an error estimate in H1 for the �uid pressure. In summary, the advantages of the proposed
VEM methods are: the use of general polygonal meshes and the possibility to recover further
variables of interest for �uid �ow problems.

The rest of the chapter is organized as follows: In Section 3.2, we introduce the variational
formulation of the Oseen problem in terms of the stream-function. We prove existence and
uniqueness of this formulation by using the Lax-Milgram Theorem. In Section 3.3, we present
the virtual element discretization of arbitrary order k ≥ 2. We also prove the existence and
uniqueness of the discrete formulation. In Section 3.4, we obtain error estimates for the stream-
function in H2. In Section 3.5, we recover other important variables for �uid �ow problems from
the discrete stream-function, such as the velocity u, the �uid vorticity ω and the �uid pressure p.
In Section 3.6, we report a set of numerical examples which allows us to assess the performance
of the proposed method.

3.2 Model problem

The incompressible Oseen equations are given by the following set of equations and boundary
conditions:

−ν∆u+ (∇u)β + γu+∇p = f in Ω,

div u = 0 in Ω,

u = 0 on Γ,

(p, 1)0,Ω = 0,

(3.2.1)

where u : Ω → R2 is the velocity �eld, p : Ω → R is the pressure �eld, f : Ω → R2 is
the external body force, ν > 0 the kinematic viscosity, β ∈ W1

∞(Ω) with div β = 0 a given
convective velocity �eld, and γ ∈ L∞(Ω) a given scalar function, respectively. We assume that
there exists γ0 such that γ(x) ≥ γ0 > 0 for almost all x ∈ Ω.

The standard velocity-pressure variational formulation of the Oseen problem reads as fol-
lows: �nd (u, p) ∈ H1

0(Ω)× L2
0(Ω), such that

ν

∫
Ω

∇u : ∇v +

∫
Ω

(∇u)β · v +

∫
Ω

γu · v −
∫
Ω

p div v =

∫
Ω

f · v ∀v ∈ H1
0(Ω),∫

Ω

q div u = 0 ∀q ∈ L2
0(Ω),
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where L2
0(Ω) := {q ∈ L2(Ω) : (q, 1)0,Ω = 0} .

Let us introduce the space of divergence-free functions

V :=
{
v ∈ H1

0(Ω) : div v = 0 in Ω
}
.

Since Ω is a simply connected domain, a well known result states that a vector function
v ∈ V if and only if there exists a scalar function φ ∈ H2(Ω), which is called stream-function,
such that

v = curl φ ∈ H1
0(Ω).

The function φ is de�ned up to a constant (see [103]). Thus, we consider the following space

X :=
{
φ ∈ H2(Ω) : φ = ∂nφ = 0 on Γ

}
,

where ∂n denotes the normal derivative. We endow X with the norm

∥φ∥X := |φ|2,Ω ∀φ ∈ X.

Then, choosing ψ ∈ X the stream-function of the velocity �eld u ∈ V (i.e. u = curl ψ), we
write the following equivalent weak formulation of the Oseen problem: �nd ψ ∈ X such that

ν

∫
Ω

D2ψ : D2ϕ+

∫
Ω

(∇curl ψ)β · curl ϕ+

∫
Ω

γ curl ψ · curl ϕ =

∫
Ω

f · curl ϕ ∀ϕ ∈ X,

We rewrite this variational problem as follows: �nd ψ ∈ X such that

O(ψ, ϕ) := νA(ψ, ϕ) +B(ψ, ϕ) + C(ψ, ϕ) = F (ϕ) ∀ϕ ∈ X, (3.2.2)

where A : X × X → R, B : X × X → R and C : X × X → R are the bilinear forms and
F : X → R is a linear functional, de�ned as follows:

A(ψ, ϕ) :=

∫
Ω

D2ψ : D2ϕ, ∀ψ, ϕ ∈ X, (3.2.3)

B(ψ, ϕ) :=

∫
Ω

(∇curl ψ)β · curl ϕ ∀ψ, ϕ ∈ X, (3.2.4)

C(ψ, ϕ) :=

∫
Ω

γ curl ψ · curl ϕ ∀ψ, ϕ ∈ X, (3.2.5)

F (ϕ) :=

∫
Ω

f · curl ϕ ∀ϕ ∈ X. (3.2.6)

The following lemma establishes some properties for the bilinear forms and the linear func-
tional previously de�ned.

Lemma 3.2.1. There exist positive constants Cβ and Cγ such that the forms de�ned in (3.2.3)-
(3.2.6) satis�es the following properties:

|A(φ, ϕ)| ≤ ∥φ∥X∥ϕ∥X ∀φ, ϕ ∈ X,

A(ϕ, ϕ) ≥ ∥ϕ∥2X ∀ϕ ∈ X,

|B(φ, ϕ)| ≤ Cβ∥φ∥X∥ϕ∥X ∀φ, ϕ ∈ X,

|C(φ, ϕ)| ≤ Cγ∥φ∥X∥ϕ∥X ∀φ, ϕ ∈ X,

C(ϕ, ϕ) ≥ γ0|ϕ|21,Ω ∀ϕ ∈ X,

|F (ϕ)| ≤ ∥F∥−2,Ω∥ϕ∥X ∀ϕ ∈ X.
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As a consequence of Lemma 3.2.1, the fact that div β = 0, and the Lax-Milgram Theorem,
we state the solvability of the continuous problem (3.2.2).

Theorem 3.2.1. There exists a unique ψ ∈ X solution to problem (3.2.2), which satis�es the
following continuous dependence on the data

∥ψ∥X ≤ C∥F∥−2,Ω,

where C is a positive constant.

Remark 3.2.1. In this chapter, we will require an additional regularity for the unique solution
of problem (3.2.2). More precisely, in what follows we assume that there exists s > 1/2 such
that ψ ∈ H2+s(Ω). This additional regularity will play an important role in the error analysis
(cf. Sections 3.4 and 3.5).

The goal of this chapter is to propose a conforming C1-VEM of arbitrary order to solve
problem (3.2.2) and to prove that the method is optimally convergent. In addition, we will
propose simple post-processes from the discrete stream-function to recover the velocity, pressure
and vorticity �elds.

3.3 Virtual element method

In this section, we will write a C1-virtual element discretization for the numerical approxima-
tion of problem (3.2.2). We start by introducing some notations and assumptions to construct
a discrete virtual subspace Xk

h , for arbitrary order k ≥ 2 and to write the discrete bilinear
forms and the discrete linear functional to propose the discrete scheme.

Let {Th}h>0 be a sequence of decompositions of Ω into general polygonal elements K. Let
hK denote the diameter of the element K and h the maximum of the diameters of all the
elements of the mesh, i.e., h := maxK∈Th hK . In what follows, we denote by NK the number of
vertices of K, by vi a generic vertex of K, with i ∈ {1, . . . , NK} and by e a generic edge of Th.
In addition for all e, we denote by he the length of edge and we de�ne a unit normal vector neK
that points outside of K. Also, we denote by xe and xK the midpoint of e and the baricenter
of K, respectively.

For the theoretical analysis, we will consider the following assumptions: there exists a real
number CTh > 0 such that, for every h and every K ∈ Th,

A1 : the ratio between the shortest edge and the diameter hK of K is larger than CTh ;

A2 : K is star-shaped with respect to every point of a ball of radius CThhK .

3.3.1 Virtual spaces and polynomial projections operator

We will denote by M∗
ℓ(K) the set of scaled monomials de�ned on each polygon K:

M∗
ℓ(K) :=

{(
x− xK
hK

)a

: |a| = ℓ

}
, (3.3.1)
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where for a non-negative multi-index a = (a1, a2), we set |a| := a1 + a2 and xa = xa11 x
a2
2 , with

x = (x1, x2). Now, we de�ne Mk(K) :=
⋃
ℓ≤kM∗

ℓ(K) =: {mj}dkj=1 as a basis of Pk(K), where
dk = dim(Pk(K)). Also we consider the set of the scaled monomials de�ned on each edge e:

Mℓ(e) :=

{
1,
x− xe
he

,

(
x− xe
he

)2

, . . . ,

(
x− xe
he

)ℓ}
.

Now, for any integer k ≥ 2 and for every polygon K ∈ Th, we introduce the following
preliminary local virtual space [77]:

X̃k
h(K) :=

{
ϕh ∈ H2(K) : ∆2ϕh ∈ Pk−2(K), ϕh|∂K ∈ C0(∂K), ϕh|e ∈ Pr(e) ∀e ∈ ∂K,

∇ϕh|∂K ∈ C0(∂K), ∂neKϕh|e ∈ Pα(e) ∀e ∈ ∂K
}
,

where r := max{3, k} and α := k − 1.

Next, for a given ϕh ∈ X̃k
h(K), we introduce the following sets of linear operators from the

local virtual space X̃k
h(K) into R:

� D1 : contains linear operators evaluating ϕh at the NK vertices of K;

� D2 : contains linear operators evaluating hvi∇ϕh at the NK vertices of K;

� D3 : for r > 3, the moments
1

he

∫
e

q(ζ)ϕh(ζ) dζ ∀q ∈ Mr−4(e), ∀ edge e;

� D4 : for α > 1, the moments

∫
e

q(ζ)∂neKϕh(ζ) dζ ∀q ∈ Mα−2(e), ∀ edge e;

� D5 : for k ≥ 4, the moments
1

h2K

∫
K

q(x)ϕh(x) dx ∀q ∈ Mk−4(K), ∀ polygon K,

where hvi corresponds to the average of the diameters corresponding to the elements with vi
as a vertex.

Now, we decompose into local contributions the bilinear forms A(·, ·), B(·, ·) and C(·, ·):

A(φ, ϕ) =
∑
K∈Th

AK(φ, ϕ) :=
∑
K∈Th

∫
K

D2φ : D2ϕ ∀φ, ϕ ∈ X,

B(φ, ϕ) =
∑
K∈Th

BK(φ, ϕ) :=
∑
K∈Th

∫
K

(∇curl φ)β · curl ϕ ∀φ, ϕ ∈ X,

C(φ, ϕ) =
∑
K∈Th

CK(φ, ϕ) =
∑
K∈Th

∫
K

γ curl φ · curl ϕ, ∀φ, ϕ ∈ X.

In what follows, we are going to build discrete version of the local bilinear forms. With this
aim, for each polygon K, we de�ne the following projector:

Πk,D
K : X̃k

h(K) −→ Pk(K) ⊆ X̃k
h(K),

ϕh 7−→ Πk,D
K ϕh,
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where Πk,D
K ϕh is the solution of the local problems:

AK(Πk,D
K ϕh, q) = AK(ϕh, q) ∀q ∈ Pk(K),

Π̂k,D
K ϕh = ϕ̂h,

̂∇Πk,D
K ϕh = ∇̂ϕh,

with (̂·) is de�ned as follows:

φ̂h :=
1

NK

NK∑
i=1

φh(vi) ∀φh ∈ C0(∂K), (3.3.2)

and vi, 1 ≤ i ≤ NK , are the vertices of K.
The following result establishes that the projector Πk,D

K is fully computable using the sets
D1 −D5 (see [77]).

Lemma 3.3.1. The operator Πk,D
K : X̃k

h(K) → Pk(K) is explicitly computable for every ϕh ∈
X̃k
h(K), using only the information of the linear operators D1 −D5.

For each K ∈ Th our local virtual space is given by:

Xk
h(K) :=

{
ϕh ∈ X̃k

h(K) :

∫
K

q∗ℓ Π
k,D
K ϕh =

∫
K

q∗ℓ ϕh, ∀q∗ ∈ M∗
k−3(K) ∪M∗

k−2(K)

}
, (3.3.3)

where M∗
k−3(K) and M∗

k−2(K) are scaled monomials of degree k−3 and k−2, respectively (see
(3.3.1)), with the convention that M∗

−1(K) = ∅ (for further details, see [77]).

It is easy to observe that Pk(K) ⊆ Xk
h(K) ⊆ X̃k

h(K). Moreover, the sets of linear operators
D1−D5 constitutes a set of degrees of freedom for Xk

h(K) (see [77]). Additionally, we note that
the condition appearing in the de�nition of the local space Xk

h(K) will be useful to construct an
L2-projection which will be employed to build the discrete bilinear forms. In fact, we consider
the L2(K)-projection onto Pk−2(K). For each ϕ ∈ L2(K), Πk−2

K ϕ ∈ Pk−2(K) satis�es∫
K

qϕ =

∫
K

q(Πk−2
K ϕ) ∀q ∈ Pk−2(K).

The following lemma establishes that Πk−2
K is computable on Xk

h(K). The proof follows
from the de�nition of the local virtual space and the set of degrees of freedom.

Lemma 3.3.2. The operator Πk−2
K : Xk

h(K) → Pk−2(K) is explicitly computable for each
ϕh ∈ Xk

h(K), using only the information of the degrees freedom D1 −D5.

Now, for k ≥ 2, we will consider the following projection onto the polynomial spacePk−1(K):
we de�ne Πk−1

K : L2(K) → Pk−1(K), for each v ∈ L2(K) by∫
K

q · v =

∫
K

q ·Πk−1
K v ∀q ∈ Pk−1(K). (3.3.4)

Using integration by parts, it is easy to see that for any ϕh ∈ Xk
h(K), the vector function

Πk−1
K curl ϕh ∈ Pk−1(K) can be explicitly computed from the degrees of freedom D1 −D5 (see

[133]).
Now, we will establish a stability property of the projector de�ned above. To achieve this,

we recall the following inverse inequality for polynomials on polygons, which hold true under
assumption A2 (see [33, Remark 6.1]).
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Lemma 3.3.3. If the assumption A2 is satis�ed, then there exists C̃ > 0, independent of h,
such that

|q|1,K ≤ C̃h−1
K ∥q∥0,K ∀q ∈ Pℓ(K), ℓ ≥ 0.

Thus, using Lemma 3.3.3 the projector Πk−1
K satis�es the following stability property: let

K ∈ Th, then for each ϕh ∈ Xk
h(K), there exists CN > 0, independent to K and h, such that

|Πk−1
K curl ϕh|1,K ≤ CN |ϕh|2,K . (3.3.5)

Now, for k ≥ 2, we introduce an additional projector which will be used to write the virtual

scheme; we de�ne Πk,∇⊥

K : Xk
h(K) −→ Pk(K) ⊆ Xk

h(K) for each ϕh ∈ Xk
h(K) as the solution

of the following local problem:∫
K

curl Πk,∇⊥

K ϕh · curl q =
∫
K

curl ϕh · curl q ∀q ∈ Pk(K),

Π̂k,∇⊥

K ϕh = ϕ̂h,

where (̂·) has been de�ned in (3.3.2). The following result states that this operator is fully
computable using the sets D1 −D5 (see [133, Lemma 3.3]).

Lemma 3.3.4. The operator Πk,∇⊥

K : Xk
h(K) → Pk(K) ⊆ Xk

h(K) is explicitly computable for
each ϕh ∈ Xk

h(K), using only the information of the set of degrees freedom D1 −D5.

Now, we introduce the global virtual space to approximate the solution of the problem
(3.2.2). For every decomposition Th of Ω into polygons K, we de�ne

Xk
h :=

{
ϕh ∈ X : ϕh|K ∈ Xk

h(K)
}
.

3.3.2 Construction of the local and global discrete forms

In this section, we will construct the discrete version of the continuous local bilinear forms
and the right hand side, using the projection operators introduced in Section 3.3.1.

First, let SKD (·, ·) and SKcurl (·, ·) be any symmetric positive de�nite bilinear forms to be
chosen as to satisfy:

c0A
K(ϕh, ϕh) ≤ SKD (ϕh, ϕh) ≤ c1A

K(ϕh, ϕh) ∀ϕh ∈ Xk
h(K), with Πk,D

K ϕh = 0,

c2C
K(ϕh, ϕh) ≤ SKcurl (ϕh, ϕh) ≤ c3C

K(ϕh, ϕh) ∀ϕh ∈ Xk
h(K), with Πk,∇⊥

K ϕh = 0,
(3.3.6)

with c0, c1, c2 and c3 positive constants independent of h and K. We will introduce bilinear
forms SKD (·, ·) and SKcurl (·, ·) satisfying (3.3.6) in Section 3.6.

For all ψh, ϕh ∈ Xk
h(K) we now de�ne the local discrete bilinear forms

Ah,K(ψh, ϕh) := AK
(
Πk,D
K ψh,Π

k,D
K ϕh

)
+ SKD

(
ψh − Πk,D

K ψh, ϕh − Πk,D
K ϕh

)
, (3.3.7)

Bh,K(ψh, ϕh) :=

∫
K

(
∇Πk−1

K curl ψh
)
β ·Πk−1

K curl ϕh, (3.3.8)

Ch,K(ψh, ϕh) :=

∫
K

γ Πk−1
K curl ψh ·Πk−1

K curl ϕh (3.3.9)

+ SKcurl
(
ψh − Πk,∇⊥

K ψh, ϕh − Πk,∇⊥

K ϕh
)
.
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Next, for all ψh, ϕh ∈ Xk
h , we de�ne the global discrete bilinear form as follows:

Ah : Xk
h ×Xk

h → R, Ah(ψh, ϕh) :=
∑
K∈Th

Ah,K(ψh, ϕh), (3.3.10)

Bh : Xk
h ×Xk

h → R, Bh(ψh, ϕh) :=
∑
K∈Th

Bh,K(ψh, ϕh), (3.3.11)

Ch : Xk
h ×Xk

h → R, Ch(ψh, ϕh) :=
∑
K∈Th

Ch,K(ψh, ϕh). (3.3.12)

We note that the bilinear form Bh(·, ·) is immediately extendable to the continuous space
X.

The following result establishes the usual consistency and stability properties for the discrete
local forms Ah,K(·, ·) and Ch,K(·, ·). The proof follows standard arguments in the VEM literature
(see [18, 27, 28]). We omit further details.

Proposition 3.3.1. The local bilinear form Ah,K(·, ·), Ch,K(·, ·) de�ned in (3.3.7) and (3.3.9)
respectively, on each element K satis�es

� Consistency: for all h > 0 and for all K ∈ Th, we have that

Ah,K(q, ϕh) = AK(q, ϕh) ∀q ∈ Pk(K), ∀ϕh ∈ Xk
h(K).

� Stability and boundedness: There exist positive constants αi, i = 0, 1, 2, 3 independent of
K, such that:

α0A
K(ϕh, ϕh) ≤ Ah,K(ϕh, ϕh) ≤ α1A

K(ϕh, ϕh) ∀ϕh ∈ Xk
h(K),

α2C
K(ϕh, ϕh) ≤ Ch,K(ϕh, ϕh) ≤ α3C

K(ϕh, ϕh) ∀ϕh ∈ Xk
h(K).

The next step consists in constructing a computable approximation of the linear functional
de�ned in (3.2.6). With this aim, we de�ne, for each element K, the following computable
term:

F h,K(ϕh) :=

∫
K

Πk−1
K f · curl ϕh ≡

∫
K

f ·Πk−1
K curl ϕh ∀ϕh ∈ Xk

h(K).

Thus, we consider the following approximation of the functional de�ned in (3.2.6):

F h(ϕh) :=
∑
K∈Th

F h,K(ϕh) ∀ϕh ∈ Xk
h . (3.3.13)

The following lemma establishes some properties for the discrete forms de�ned in (3.3.10),
(3.3.11), (3.3.12) and (3.3.13).

Lemma 3.3.5. There exist positive constants CAh , CBh , C2 and CFh, independent of h, such
that the forms de�ned in (3.3.10)-(3.3.13) satis�es the following properties:

|Ah(ψh, ϕh)| ≤ CAh ∥ψh∥X∥ϕh∥X ∀ψh, ϕh ∈ Xk
h , (3.3.14)

Ah(ϕh, ϕh) ≥ α0 ∥ϕh∥2X ∀ϕh ∈ Xk
h , (3.3.15)

|Bh(ψh, ϕh)| ≤ CBh∥ψh∥X∥ϕh∥X ∀ψh, ϕh ∈ Xk
h , (3.3.16)

|Ch(ψh, ϕh)| ≤ C2 ∥ψh∥X∥ϕh∥X ∀ψh, ϕh ∈ Xk
h , (3.3.17)

Ch(ϕh, ϕh) ≥ α2γ0|ϕh|21,Ω ∀ψh, ϕh ∈ Xk
h , (3.3.18)

|F h(ϕh)| ≤ CFh∥f∥0,Ω∥ϕh∥X ∀ϕh ∈ Xk
h . (3.3.19)
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Proof. The proof of these properties follow standard arguments in the VEM literature (see
[18, 27, 28]). Nevertheless, we will prove the property (3.3.16). Indeed, let ψh, ϕh ∈ Xk

h , then
using the de�nition of the bilinear form Bh(·, ·) and the Cauchy-Schwarz inequality, we have
that

|Bh(ψh, ϕh)| ≤
∑
K∈Th

∣∣∣∣∫
K

(
∇Πk−1

K curl ψh
)
β ·Πk−1

K curl ϕh

∣∣∣∣
≤
∑
K∈Th

∥β∥L∞(K)∥∇Πk−1
K curl ψh∥0,K∥Πk−1

K curl ϕh∥0,K

≤ ∥β∥L∞(Ω)

∑
K∈Th

|Πk−1
K curl ψh|1,K∥curl ϕh∥0,K

≤ CN∥β∥L∞(Ω)

∑
K∈Th

|ψh|2,K |ϕh|1,K

≤ CN∥β∥L∞(Ω)∥ψh∥X |ϕh|1,Ω
≤ CNCp∥β∥L∞(Ω)∥ψh∥X∥ϕh∥X ,

(3.3.20)

where we have used the inequality (3.3.5) and Cp > 0 is the constant such that

|ϕh|1,Ω ≤ Cp∥ϕh∥X ,

which is independent of h and K, for all K ∈ Th. Then, taking CBh := CNCp∥β∥L∞(Ω) > 0, we
conclude the proof.

Remark 3.3.1. We observe that using the projector Πk,∇⊥

K it is possible to construct alternative
discrete bilinear forms in (3.3.8) and (3.3.9) More precisely, we can consider the following
computable discrete forms:

B̃h,K(ψh, ϕh) :=

∫
K

(
∇curl Πk,∇⊥

K ψh

)
β · curl Πk,∇⊥

K ϕh,

C̃h,K(ψh, ϕh) :=

∫
K

γ curl Πk,∇⊥

K ψh · curl Πk,∇⊥

K ψh + SKcurl
(
ψh − Πk,∇⊥

K ψh, ϕh − Πk,∇⊥

K ϕh
)
.

With these new forms, it is possible to write a di�erent discrete formulation to solve the Oseen
problem. We will test the discrete method derived with these forms in the numerical result
section (see Section 3.6.3).

3.3.3 Discrete formulation

Now we write the discrete formulation by using the discrete forms and employing the results
of the previous sections we establish existence and uniqueness for our discrete scheme.

The virtual element discretization reads as follows: �nd ψh ∈ Xk
h such that

Oh(ψh, ϕh) := νAh(ψh, ϕh) +Bh(ψh, ϕh) + Ch(ψh, ϕh) = F h(ϕh) ∀ϕh ∈ Xk
h . (3.3.21)

The following result establishes that the bilinear form Oh(·, ·) is elliptic.
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Lemma 3.3.6. Let CN be the constant such that (3.3.5) hold true. Suppose that

C2
N∥β∥2L∞(Ω)

2νγ0α0α2

< 1, (3.3.22)

then there exists α̂ > 0, independent of h, such that

Oh(ϕh, ϕh) ≥ α̂∥ϕh∥2X ∀ϕh ∈ Xk
h .

Proof. Let ϕh ∈ Xk
h . Then, using (3.3.15), (3.3.18) and (3.3.20) we get

Oh(ϕh, ϕh) = νAh(ϕh, ϕh) +Bh(ϕh, ϕh) + Ch(ϕh, ϕh)

≥ να0∥ϕh∥2X − CN∥β∥L∞(Ω)∥ϕh∥X |ϕh|1,Ω + α2γ0|ϕh|21,Ω

≥ να0∥ϕh∥2X −
C2
N∥β∥2L∞(Ω)

2α2γ0
∥ϕh∥2X − α2γ0

2
|ϕh|21,Ω + α2γ0|ϕh|21,Ω

=
(
να0 −

C2
N∥β∥2L∞(Ω)

2α2γ0

)
∥ϕh∥2X +

α2γ0
2

|ϕh|21,Ω

≥
(
να0 −

C2
N∥β∥2L∞(Ω)

2α2γ0

)
∥ϕh∥2X ,

where we have used the Young inequality. Then, taking α̂ := να0−
C2
N∥β∥2L∞(Ω)

2α2γ0
> 0, the proof

is complete.

As a consequence of the previous lemma, we have the following result.

Theorem 3.3.1. Suppose that (3.3.22) holds true. Then, there exists a unique ψh ∈ Xk
h

solution to problem (3.3.21) satisfying the following estimate

∥ψh∥X ≤ C∥f∥0,Ω,

where C is a positive constant independent to h.

Remark 3.3.2. Assumption (3.3.22) holds provided one selects γ appropriately. For instance,
when the Oseen system is derived as a time discretisation of Navier�Stokes equations, this
parameter represents the inverse of the timestep. Thus, the aforementioned relation can be
regarded as a CFL-type condition at a discrete level.

3.4 Error analysis

In the present section, we develop an error analysis for the discrete virtual element scheme
presented in Section 3.3. We start with some preliminary results.
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3.4.1 Preliminary results

First, we recall the estimate for the interpolant ϕI ∈ Xk
h of ϕ (see [18, 38]).

Proposition 3.4.1. Assume that A1 and A2 are satis�ed. Then, for each ϕ ∈ Hδ(Ω), there
exist ϕI ∈ Xk

h and C > 0, independent of h, such that

∥ϕ− ϕI∥m,Ω ≤ Chδ−m|ϕ|δ,Ω, m = 0, 1, 2, 2 ≤ δ ≤ k + 1, k ≥ 2.

Now, invoking the Scott-Dupont Theory (see [54]) for the polynomial approximation, we
have

Proposition 3.4.2. If the assumption A2 is satis�ed, then there exists a constant C > 0, such
that for every ϕ ∈ Hδ(K), there exists ϕπ ∈ Pk(K), k ≥ 0, such that

|ϕ− ϕπ|m,K ≤ Chδ−mK |ϕ|δ,K , 0 ≤ m ≤ δ ≤ k + 1, ℓ = 0, 1, . . . , [δ],

where [δ] denoting largest integer equal or smaller than δ ∈ R.

We are going to use the following standard approximation property (see [54, 59]):

Lemma 3.4.1. There exists a constant C > 0, independent of hK, such that for all v ∈ Hδ(K)

∥v −Πk−1
K v∥m,K ≤ Chδ−mK |v|δ,K 0 ≤ m ≤ δ ≤ k, k ≥ 1.

Now, we start with the following bound for the continuous and discrete linear functionals.

Proposition 3.4.3. Let k ≥ 2. Assume that f ∈ L2(Ω) such that f |K ∈ Hk−2(K) for each
K ∈ Th. Let F (·) and F h(·) be the functionals de�ned in (3.2.6) and (3.3.13), respectively.
Then, we have the following estimate:

∥F − F h∥ := sup
ϕh∈Xk

h
ϕh ̸=0

|F (ϕh)− F h(ϕh)|
∥ϕh∥X

≤ Chk−1|f |k−2,h.

Since γ is a scalar function, the bilinear form Ch,K(·, ·) does not satisfy the consistency
property. Nevertheless, we have the following auxiliary results which will be useful to prove the
error estimates.

Lemma 3.4.2. Let K ∈ Th and let γ be a smooth scalar �eld de�ned on K. For any p,q
smooth enough vector �elds de�ned on K, we have

(γ p,q)0,K − (γΠk−1
K p,Πk−1

K q)0,K ≤∥γ p−Πk−1
K (γ p)∥0,K∥q−Πk−1

K q∥0,K
+ ∥p−Πk−1

K p∥0,K∥γ q−Πk−1
K (γ q)∥0,K

+ ∥γ ∥L∞(K)∥p−Πk−1
K p∥0,K∥q−Πk−1

K q∥0,K .

Proof. The proof follows adding and subtracting suitable terms and using the properties of the
projection Πk−1

K (Lemma 3.4.1). We omit further details.

As an immediate consequence of Lemma 3.4.2, we have the following result.
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Lemma 3.4.3. For all K ∈ Th and for all φh, ϕh ∈ Xk
h(K), we have that

CK(φh, ϕh)− Ch,K(φh, ϕh)

≤ ∥γ curl φh −Πk−1
K (γcurl φh)∥0,K∥curl ϕh −Πk−1

K curl ϕh∥0,K
+ ∥γ curl ϕh −Πk−1

K (γcurl ϕh)∥0,K∥curl φh −Πk−1
K curl φh∥0,K

+ Cγ∥curl ϕh −Πk−1
K curl ϕh∥0,K∥curl φh −Πk−1

K curl φh∥0,K
+ SKcurl (φh − Πk,∇⊥

K φh, ϕh − Πk,∇⊥

K ϕh),

where Cγ > 0 is a constant depending on the function γ.

For the bilinear forms BK(·, ·) and Bh,K(·, ·), we have the following analogous result.

Lemma 3.4.4. For all K ∈ Th and for all φh, ϕh ∈ Xk
h(K), we have that

BK(φh, ϕh)−Bh,K(φh, ϕh)

≤ ∥(∇curl φh)β −Πk−1
K [(∇curl φh)β]∥0,K∥curl ϕh −Πk−1

K curl ϕh∥0,K
+ ∥β∥L∞(K)|curl φh −Πk−1

K curl φh|1,K∥Πk−1
K curl ϕh∥0,K .

Proof. Let φh, ϕh ∈ Xk
h(K). Then, by using the de�nition of the bilinear forms BK(·, ·) and

Bh,K(·, ·), adding and subtracting suitable terms and using the properties of the projection
Πk−1
K , we have

BK(φh, ϕh)−Bh,K(φh, ϕh) =

∫
K

(∇curl φh)β · (curl ϕh −Πk−1
K curl ϕh)

+

∫
K

(∇curl φh −∇Πk−1
K curl φh)β ·Πk−1

K curl ϕh

=

∫
K

(
(∇curl φh)β −Πk−1

K [(∇curl φh)β]
)
· (curl ϕh −Πk−1

K curl ϕh)

+

∫
K

(∇curl φh −∇Πk−1
K curl φh)β ·Πk−1

K curl ϕh

≤ ∥(∇curl φh)β −Πk−1
K [(∇curl φh)β]∥0,K∥curl ϕh −Πk−1

K curl ϕh∥0,K
+ ∥β∥L∞(K)|curl φh −Πk−1

K curl φh|1,K∥Πk−1
K curl ϕh∥0,K ,

where in the last step we have used the Cauchy-Schwarz inequality.

3.4.2 A priori error estimates

We start with the following result.

Lemma 3.4.5. Suppose that (3.3.22) holds true. Let ψ and ψh be the unique solutions of
problem (3.2.2) and problem (3.3.21), respectively. Moreover, suppose that ψ ∈ H2+s(Ω), β ∈
Ws−1

∞ (Ω) and γ ∈ W1+s
∞ (Ω), for 1/2 < s ≤ k−1, then there exists a constant C > 0, independent

of h, such that

∥ψ − ψh∥X ≤ C
(
∥F − F h∥+ ∥ψ − ψI∥X + |ψ − ψπ|1,h + |ψ − ψπ|2,h + hs∥ψ∥2+s,Ω

)
,

for all ψI ∈ Xk
h and for all ψπ ∈ L2(Ω) such that ψπ|K ∈ Pk(K) for all polygon K ∈ Th.
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Proof. Let ψI ∈ Xk
h . We set δh := ψh − ψI , then

∥ψ − ψh∥X ≤ ∥ψ − ψI∥X + ∥δh∥X . (3.4.1)

We will bound the second term above, we begin by using Lemma 3.3.6, adding and subtract-
ing the term O(ψ, δh) and using the de�nition of the continuous and discrete problems (3.2.2)
and (3.3.21), respectively, we have

α̂∥δh∥2X ≤ Oh(δh, δh) = Oh(ψh, δh)−Oh(ψI , δh)

= F h(δh)−Oh(ψI , δh)

= F h(δh)− F (δh) +O(ψ, δh)−Oh(ψI , δh)

= (F h(δh)− F (δh)) +
∑
K∈Th

{
νAK(ψ, δh) +BK(ψ, δh) + CK(ψ, δh)

}
−
∑
K∈Th

{
νAh,K(ψI , δh) +Bh,K(ψI , δh) + Ch,K(ψI , δh)

}
= (F h(δh)− F (δh)) +

∑
K∈Th

{
νAK(ψ − ψπ, δh)− νAh,K(ψI − ψπ, δh)

}
+
∑
K∈Th

{
BK(ψ, δh)−Bh,K(ψI , δh)

}
+
∑
K∈Th

{
CK(ψ, δh)− Ch,K(ψI , δh)

}
=: TF +

∑
K∈Th

{TA}+
∑
K∈Th

{TB}+
∑
K∈Th

{TC} ,

(3.4.2)

where we have added and subtracted ψπ ∈ Pk(K) for all K ∈ Th (recall k ≥ 2) and we have
used the consistency property of bilinear form Ah(·, ·). Next, we bound each term on the right
hand side above.

For the term TF , we have

TF ≤ ∥F − F h∥∥δh∥X . (3.4.3)

Now, for the term TA, we use the continuity of the bilinear forms AK(·, ·) and Ah,K(·, ·),
together with the triangular inequality to obtain that

TA = ν
{
AK(ψ − ψπ, δh) + Ah,K(ψI − ψπ, δh)

}
≤ C(|ψ − ψπ|2,K |δh|2,K + |ψI − ψπ|2,K |δh|2,K)
≤ C (|ψ − ψπ|2,K + |ψ − ψI |2,K) |δh|2,K .

(3.4.4)

For term TB, we add and subtract BK(ψI , δh),

TB = BK(ψ, δh)−Bh,K(ψI , δh)

= BK(ψ, δh)−BK(ψI , δh) +BK(ψI , δh)−Bh,K(ψI , δh)

= BK(ψ − ψI , δh) +
(
BK(ψI , δh)−Bh,K(ψI , δh)

)
≤ C|ψ − ψI |2,K |δh|2,K +

(
BK(ψI , δh)−Bh,K(ψI , δh)

)
,

(3.4.5)
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where we have used the continuity of BK(·, ·). To bound the second term on the right hand side
above, we use Lemma 3.4.4 along with the stability and approximation properties of projector
Πk−1
K . We have that

BK(ψI , δh)−Bh,K(ψI , δh)

≤ ∥(∇curl ψI)β −Πk−1
K [(∇curl ψI)β]∥0,K∥curl δh −Πk−1

K curl δh∥0,K
+ ∥β∥L∞(K)|curl ψI −Πk−1

K curl ψI |1,K∥Πk−1
K curl δh∥0,K

≤ C∥(∇curl ψI)β −Πk−1
K [(∇curl ψI)β]∥0,K hK |δh|2,K

+ C∥β∥L∞(K)|curl ψI −Πk−1
K curl ψI |1,K |δh|2,K

= ChK |δh|2,KE1 + C|δh|2,KE2.

(3.4.6)

In what follows, we bound the terms E1 and E2. For the term E1, we have

E1 := ∥(∇curl ψI)β −Πk−1
K [(∇(curl ψI)β]∥0,K

≤ ∥(∇curl ψI)β − (∇curl ψ)β∥0,K + ∥(∇curl ψ)β −Πk−1
K [(∇curl ψ)β]∥0,K

+ ∥Πk−1
K [(∇curl ψ)β]−Πk−1

K [(∇curl ψI)β]∥0,K
≤ ∥(∇curl (ψI − ψ))β∥0,K + ∥(∇curl ψ)β −Πk−1

K [(∇curl ψ)β]∥0,K
+ ∥(∇curl (ψ − ψI))β∥0,K

≤ 2∥β∥L∞(K)|ψ − ψI |2,K + hs−1
K |∇(curl ψ)β|s−1,K

≤ 2∥β∥L∞(K)|ψ − ψI |2,K + hs−1
K ∥β∥Ws−1

∞ (K)∥∇(curl ψ)∥s−1,K

≤ 2∥β∥L∞(K)|ψ − ψI |2,K + hs−1
K ∥β∥Ws−1

∞ (K)∥ψ∥2+s,K ,

(3.4.7)

where we have used the approximation and stability properties of projector Πk−1
K . Now, for the

term E2, we proceed as follows,

E2 := |curl ψI −Πk−1
K curl ψI |1,K

≤ |curl ψI − curl ψ|1,K + |curl ψ −Πk−1
K curl ψ|1,K

+ |Πk−1
K curl ψ −Πk−1

K curl ψI |1,K
≤ C

(
|ψ − ψI |2,K + hs|curl ψ|1+s,K + |Πk−1

K curl (ψ − ψI)|1,K
)

≤ C(|ψ − ψI |2,K + hs|curl ψ|1+s,K + |ψ − ψI |2,K)
≤ C(|ψ − ψI |2,K + hs|ψ|2+s,K),

(3.4.8)

where, once again, we have used the approximation and stability properties of Πk−1
K .

Inserting (3.4.7) and (3.4.8) into (3.4.6), we obtain

BK(ψI , δh)−Bh,K(ψI , δh)

≤ C(∥β∥L∞(Ω)hK |ψ − ψI |2,K + hsK∥β∥Ws−1
∞ (Ω)∥ψ∥2+s,K)|δh|2,K

+ C∥β∥L∞(Ω)(|ψ − ψI |2,K + hs∥ψ∥2+s,K)|δh|2,K
≤ C(|ψ − ψI |2,K + hsK∥ψ∥2+s,K)|δh|2,K .

(3.4.9)

Now, using estimate (3.4.9), from (3.4.5), we obtain

TB ≤ C(|ψ − ψI |2,K + hsK∥ψ∥2+s,K)|δh|2,K . (3.4.10)
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By using Lemma 3.4.3 and repeating analogous arguments as above, we can prove that

TC ≤ C
(
|ψ − ψI |2,K + |ψ − ψπ|1,K + hs+1

K ∥ψ∥2+s,K
)
|δh|2,K . (3.4.11)

Then, inserting (3.4.3), (3.4.4), (3.4.10) and (3.4.11) into (3.4.2) and employing the Hölder
inequality (for sequences), we obtain

α̂∥δh∥X ≤ C
(
∥F − F h∥+ ∥ψ − ψI∥X + |ψ − ψπ|1,h + |ψ − ψπ|2,h + hs∥ψ∥2+s,Ω

)
. (3.4.12)

Therefore, the proof follows from (3.4.1) and (3.4.12).

Theorem 3.4.1. Let k ≥ 2 and f ∈ L2(Ω) such that f |K ∈ Hk−2(K) for each K ∈ Th.
Suppose that (3.3.22) holds true. Let ψ and ψh be the unique solutions of problem (3.2.2) and
problem (3.3.21), respectively. We suppose that ψ ∈ H2+s(Ω), β ∈ Ws−1

∞ (Ω) and γ ∈ W1+s
∞ (Ω),

for 1/2 < s ≤ k − 1, then there exists a constant C > 0, independent of h, such that

∥ψ − ψh∥X ≤ Chs (|f |k−2,h + ∥ψ∥2+s,Ω) .

Proof. The result follows from Lemma 3.4.5 and Propositions 3.4.1, 3.4.2 and 3.4.3.

3.5 Recovering the velocity, vorticity and pressure �elds

The solution of the proposed virtual element method (3.3.21) delivers an approximation of
the stream-function �eld. We remark that one of the advantages of solving �uid �ow problems
through a stream-function formulation is the possibility of computing further variables of in-
terest, such as the velocity u, the �uid pressure p and the �uid vorticity ω. In this section, we
will present strategies to recover these three �elds. We compute a discrete velocity and discrete
vorticity as a simple postprocess of the computed stream-function using suitable projections,
while to recover the pressure we will write a generalized Poisson problem with data coming
from the computed stream-function and the load term f , then we propose a discrete virtual
scheme, based on the C0 enhanced virtual element space from [7] to approximate the pressure.
Also in this section, we will establish error estimates in a broken H1-norm for the velocity and
in the L2-norm for the vorticity. Moreover, under the assumptions that Ω is a convex domain
and that the family of polygonal meshes Th is quasi-uniform also we will establish an error
estimate for the pressure in the H1-norm.

3.5.1 Computing the velocity �eld

We start by noticing that if the stream-function ψ ∈ X is the unique solution of (3.2.2),
then we have that the velocity u satis�es:

u = curl ψ. (3.5.1)

At the discrete level, we compute a discrete velocity as a post-processing of the computed
stream-function ψh ∈ Xk

h as follows: if ψh is the unique solution of problem (3.3.21), then the
function

uh := Πk−1
h curl ψh, (3.5.2)
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is an approximation of the velocity, where Πk−1
h is de�ned in L2(Ω) by

(Πk−1
h v)|K = Πk−1

K (v|K) ∀K ∈ Th.

The following result establishes the accuracy of the discrete velocity:

Theorem 3.5.1. Assume that the hypotheses of Theorem 3.4.1 hold true, then there exists a
positive constant C, independent of h, such that

|u− uh|1,h ≤ Chs (|f |k−2,h + ∥ψ∥2+s,Ω) .

Proof. From (3.5.1) and (3.5.2), triangular inequality and property (3.3.5), we have

|u− uh|21,h = |curl ψ −Πk−1
h curl ψh|21,h

=
∑
K∈Th

|curl ψ −Πk−1
K curl ψh|21,K

≤ C
∑
K∈Th

(
|curl ψ −Πk−1

K curl ψ|21,K + |Πk−1
K (curl ψ − curl ψh)|21,K

)
≤ C

( ∑
K∈Th

h2sK∥curl ψ∥21+s,K +
∑
K∈Th

|Πk−1
K curl (ψ − ψh)|21,K

)
≤ Ch2s

( ∑
K∈Th

∥ψ∥22+s,K + CN
∑
K∈Th

|ψ − ψh|22,K
)

≤ C(h2s∥ψ∥22+s,Ω + ∥ψ − ψh∥2X)
≤ Ch2s

(
|f |2k−2,h + ∥ψ∥22+s,Ω

)
,

where we have used the approximation properties of projector Πk−1
K and Theorem 3.4.1. The

proof is complete

3.5.2 Computing the �uid vorticity

Now, we will present an strategy to recover the �uid vorticity ω, which is key in several
important applications in �uid mechanics (see [46, 89, 14, 15]). First, we remark that ω = rotu,
then using the identity u = curl ψ, we have that

ω = rotu = rot(curl ψ) = −∆ψ. (3.5.3)

We introduce an L2-orthogonal projection which will be used to construct the discrete
vorticity. For k ≥ 2 and for each K ∈ Th, we consider the L2-projection onto Pk−2(K): for
v ∈ L2(K), Πk−2

K v ∈ Pk−2(K) is the unique function such that

(v − Πk−2
K v, q)0,K = 0 ∀q ∈ Pk−2(K). (3.5.4)

We have the following approximation result (see [54, 28]).

Proposition 3.5.1. Let Πk−2
K be the projection de�ned in (3.5.4). Then, the following approx-

imation property hold true: there exists a constant Ĉ, independent of hK, such that

∥v − Πk−2
K v∥m,K ≤ Ĉhδ−mK |v|δ,K ∀v ∈ Hδ(K), 0 ≤ m ≤ δ ≤ k − 1, k ≥ 2.
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Now, we compute a discrete vorticity as follows: if ψh ∈ Xk
h is the unique solution of (3.3.21),

then the function

ωh := −Πk−2
h (∆ψh), (3.5.5)

is an approximation of the vorticity, where we have used the notation

(Πk−2
h v)|K = Πk−2

K (v|K) ∀v ∈ L2(Ω) and ∀K ∈ Th.

Remark 3.5.1. We observe that for each ϕh ∈ Xk
h(K) the polynomial function Πk−2

K (∆ϕh) ∈
Pk−2(K), k ≥ 2, is computable using the degrees of freedom D1−D5, where X

k
h(K) is the local

virtual space de�ned in (3.3.3). Indeed, for each ϕh ∈ Xk
h(K) and for all q ∈ Pk−2(K), we have∫

K

qΠk−2
K (∆ϕh) =

∫
K

q∆ϕh =

∫
K

ϕh∆q −
∫
∂K

ϕh ∂nKq +

∫
∂K

q ∂nKϕh,

since ∆q ∈ Pk−4(K), the �rst integral on the right hand side above is computable using the
output values of the set D5. Moreover, the boundary terms are fully computable using the
information of D1 −D4.

Now, we can prove the following convergence result for the discrete vorticity.

Theorem 3.5.2. Assume that the hypotheses of Theorem 3.4.1 hold true, then there exists a
positive constant C, independent of h, such that

∥ω − ωh∥0,Ω ≤ Chs (|f |k−2,h + ∥ψ∥2+s,Ω) .

Proof. From (3.5.3) and (3.5.5), triangular inequality, we have

∥ω − ωh∥20,Ω = ∥∆ψ − Πk−2
h (∆ψh)∥20,Ω =

∑
K∈Th

∥∆ψ − Πk−2
K (∆ψh)∥20,K

≤ C
∑
K∈Th

(
∥∆ψ − Πk−2

K (∆ψ)∥20,K + ∥Πk−2
K (∆ψ −∆ψh)∥20,K

)
≤ C

(∑
K∈Th

h2sK∥∆ψ∥2s,K +
∑
K∈Th

∥Πk−2
K ∆(ψ − ψh)∥20,K

)
≤ C(h2s∥ψ∥22+s,Ω + ∥ψ − ψh∥2X)
≤ Ch2s

(
|f |2k−2,h + ∥ψ∥22+s,Ω

)
,

where we have used Proposition 3.5.1 and Theorem 3.4.1. The proof is complete.

3.5.3 Computing the �uid pressure

Next, we will present an strategy to recover the �uid pressure. We will follow recent results
presented in [133] for the Brinkman equations.

We start by considering the following Hilbert space:

H̃1(Ω) :=
{
q ∈ H1(Ω) : (q, 1)0,Ω = 0

}
.
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By using the identity −∆u = curl (rotu)−∇(divu) in the momentum equation of problem
(3.2.1) and the fact that u = curl ψ, we have that

f = −ν∆u+ (∇u)β + γ u+∇p
= ν (curl (rotu)−∇(div u)) + (∇u)β + γ u+∇p
= ν curl (rot(curl ψ)) + (∇curl ψ)β + γ curl ψ +∇p,

where we have used that divu = 0 in Ω (cf. (3.2.1)). Now using the identity rot(curlψ) = −∆ψ,
the above equality can be rewritten as follows:

∇p = f − γ curl ψ − (∇curl ψ)β + ν curl (∆ψ). (3.5.6)

Then, by testing (3.5.6) with ∇q for q ∈ H̃1(Ω), we get the following variational problem to

calculate the �uid pressure: �nd p ∈ H̃1(Ω) such that

D∇(p, q) = Gψ(q) ∀q ∈ H̃1(Ω), (3.5.7)

where D∇ : H̃1(Ω)× H̃1(Ω) → R is de�ned by

D∇(p, q) :=

∫
Ω

∇p · ∇q ∀p, q ∈ H̃1(Ω) (3.5.8)

and Gψ : H̃1(Ω) → R is the functional de�ned by:

Gψ(q) :=

∫
Ω

f ·∇q− γ curlψ ·∇q− (∇curlψ)β ·∇q+ ν curl (∆ψ) ·∇q ∀q ∈ H̃1(Ω). (3.5.9)

From now on, we assume that Ω is a convex domain. As a consequence, we have an additional
regularity for the unique solution of problem (3.2.2). More precisely, we have that ψ ∈ H3(Ω)
and that there exists a positive constant C such that

∥ψ∥3,Ω ≤ C∥f∥0,Ω.

As an immediate consequence of the above regularity result, the generalized Poincaré in-
equality and the Lax-Milgram Theorem, we have the following result.

Theorem 3.5.3. There exists a unique p ∈ H̃1(Ω) solution of problem (3.5.7). In addition,
there exists C > 0 such that

∥p∥1,Ω ≤ C∥f∥0,Ω.

In what follows, we will propose a lowest order discrete virtual element scheme to approx-
imate the �uid pressure over the same polygonal mesh Th used to solve the stream-function
discrete formulation (3.3.21). With this aim, we split the bilinear form D∇(·, ·), as a contribu-
tion element by element as follows:

D∇(p, q) :=
∑
K∈Th

DK
∇ (p, q) =

∑
K∈Th

∫
K

∇p · ∇q, ∀p, q ∈ H̃1(Ω). (3.5.10)

Now, for each polygon K ∈ Th, we consider the �nite-dimensional space W̃h(K), de�ned as

W̃h(K) :=
{
qh ∈ H1(K) ∩ C0(∂K) : qh|e ∈ P1(e) ∀e ⊂ ∂K, ∆qh ∈ P0(K)

}
.

The following set of linear operator is de�ned for all qh ∈ W̃h(K):
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P1 : the values of qh at the vertices of K.

We de�ne the projector Π∇
K : W̃h(K) → P1(K) ⊆ W̃h(K) for each qh ∈ W̃h(K) as the

solution of

DK
∇ (Π∇

Kqh, p1) = DK
∇ (qh, p1) ∀p1 ∈ P1(K),

Π̂∇
Kqh = q̂h,

where (̂·) is de�ned in (3.3.2). We note that the operator Π∇
K is explicitly computable using the

set P1 (see [28]). In addition, using this projection and the de�nition of W̃h(K), we introduce
our local virtual space:

Wh(K) :=
{
qh ∈ W̃h(K) : (qh − Π∇

Kqh, 1)0,K = 0
}
.

It is easy to observe that P1(K) ⊆ Wh(K) ⊆ W̃h(K). Moreover, we have that the set P1

constitutes a set of degrees of freedom for Wh(K) and operator Π∇
K is also computable using

only the set P1 (see [28]).
Now, we de�ne the following global virtual space to approximate the pressure

Wh :=
{
qh ∈ H̃1(Ω) : qh|K ∈ Wh(K) ∀K ∈ Th

}
.

Next, we will continue with the construction of the discrete version of the bilinear form and
the linear functional introduced in (3.5.8) and (3.5.9), respectively. To do that, we consider an
L2-orthogonal projection. For each K ∈ Th, we de�ne Π0

K : L2(K) → P0(K) as the unique
function such that ∫

K

(v −Π0
Kv) · q = 0 ∀q ∈ P0(K).

It is easy to check that Π0
K∇qh is fully computable, using the degrees of freedom P1, for

each qh ∈ Wh(K).
Let SK∇ (·, ·) be any symmetric positive de�nite bilinear form such that

c4D
K
∇ (qh, qh) ≤ SK∇ (qh, qh) ≤ c5D

K
∇ (qh, qh) ∀qh ∈ Wh(K), with Π∇

Kqh = 0, (3.5.11)

for some positive constants c4 and c5 independent of K. We will make a choose for SK∇ (·, ·)
satisfying (3.5.11) in Section 3.6.

Then, we set

Dh
∇(ph, qh) :=

∑
K∈Th

Dh,K
∇ (ph, qh) ∀ph, qh ∈ Wh, (3.5.12)

where

Dh,K
∇ (ph, qh) :=

∫
K

Π0
K∇ph·Π0

K∇qh+SK∇
(
ph−Π∇

Kph, qh−Π∇
Kqh
)

∀ph, qh ∈ Wh(K). (3.5.13)

The following result gives us consistency and stability properties of the local discrete bilinear
form Dh,K

∇ (·, ·).

Proposition 3.5.2. The local bilinear forms DK
∇ (·, ·) and Dh,K

∇ (·, ·) de�ned in (3.5.10) and
(3.5.13), respectively, satis�es the following properties:
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� Consistency: for each h > 0 and any K ∈ Th, we have

Dh,K
∇ (qh, p1) = DK

∇ (qh, p1) ∀p1 ∈ P1(K), ∀qh ∈ Wh(K). (3.5.14)

� Stability: there exist positive constants α4, α5, independent of hK and K, such that

α4D
K
∇ (qh, qh) ≤ Dh,K

∇ (qh, qh) ≤ α5D
K
∇ (qh, qh) ∀qh ∈ Wh(K). (3.5.15)

The next step consists in constructing an approximation of the right hand side (3.5.9),
which depends on the stream-function ψ and the source term f . With this aim, from now on,
we assume that the discrete problem (3.3.21) has been solved with k = 3. So, ψh ∈ X3

h is
available and satisfy the error bound presented in Theorem 3.4.1.

Now, for each K ∈ Th and each qh ∈ Wh(K), we de�ne the following discrete linear func-
tional:

Gψh,K(qh) :=

∫
K

f ·Π0
K∇qh −

∫
K

(
∇Π2

Kcurl ψh
)
β ·Π0

K∇qh

−
∫
K

γΠ2
Kcurl ψh ·Π0

K∇qh + ν

∫
K

curl (Π1
K(∆ψh)) ·Π0

K∇qh,

where Π2
K and Π1

K are the projections de�ned in (3.3.4) and (3.5.4), for k = 3, respectively.
We have that Gψh,K(·) is fully computable for each K ∈ Th using the degrees of freedom P1.

We de�ne the following global (computable) linear functional:

Gψh(qh) :=
∑
K∈Th

Gψh,K(qh) ∀qh ∈ Wh. (3.5.16)

Therefore, we propose the following virtual element discretization of lowest order to recover
the �uid pressure: Given ψh ∈ X3

h, �nd ph ∈ Wh such that

Dh
∇(ph, qh) = Gψh(qh) ∀qh ∈ Wh. (3.5.17)

We observe that by virtue of (3.5.15) the bilinear form Dh
∇(·, ·) is bounded. Moreover, the

following result states that it is also elliptic.

Lemma 3.5.1. There exists a constant αp > 0, independent of h, such that

Dh
∇(qh, qh) ≥ αp ∥qh∥21,Ω ∀qh ∈ Wh.

Next, we will prove that the linear functional de�ned in (3.5.16) is bounded. To do that,
we consider the following approximation result (see [54]).

Proposition 3.5.3. If the assumption A2 is satis�ed, then there exists a constant C > 0, such
that for every v ∈ H2(K), there exists vπ ∈ P1(K) such that

∥v − vπ∥0,K + hK |v − vπ|1,K ≤ Ch2K |v|2,K .

Now, we present an interpolation result in the virtual space Wh (see [63, 134]).
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Proposition 3.5.4. If the assumptions A1 and A2 are satis�ed, then there exists a constant
C > 0, independent of h, such that for each v ∈ H2(Ω) there exists vI ∈ Wh such that

∥v − vI∥0,Ω + h|v − vI |1,Ω ≤ Ch2|v|2,Ω.

To prove that the functional Gψh(·) de�ned in (3.5.16) is bounded we will assume that the
family of polygonal meshes Th is quasi-uniform. More precisely, from now on, we will assume
the following:

A3: For each h > 0 and for each K ∈ Th, there exists a constant ĉ > 0, independent of h,
such that hK ≥ ĉ h.

The following result establishes that the linear functional Gψh(·) de�ned in (3.5.16) is
bounded under assumptions A1,A2 and A3.

Lemma 3.5.2. Let ψ ∈ H3(Ω) be the unique solution of problem (3.2.2) and let ψh ∈ X3
h be the

unique solution of problem (3.3.21). We assume that A1−A3 are satis�ed, then the functional
Gψh : Wh → R de�ned in (3.5.16) is bounded.

Proof. The result follows repeating the arguments used in the proof of Proposition 4.20 in
[133].

As a consequence of Lemmas 3.5.1, 3.5.2 and the Lax-Milgram Theorem, we have the
following result.

Theorem 3.5.4. The discrete virtual element scheme (3.5.17) admits a unique solution ph ∈
Wh and there exists C > 0, independent to h, such that

∥ph∥1,Ω ≤ C (∥f∥0,Ω + |f |1,h) .

In what follows, we will establish the order of convergence of the discrete scheme (3.5.17)
under the assumptionsA1−A3 and the additional regularity results p ∈ H2(Ω) and ψ ∈ H4(Ω).
This additional regularity for the stream-function can be attained, for instance, if f ∈ L2(Ω)
and Ω is a rectangular domain (see [57]). We begin with the following result which proof follows
standard arguments in the VEM literature (see [27, 65]).

Proposition 3.5.5. Let p and ph be the unique solutions of problems (3.5.7) and (3.5.17),
respectively. If the assumptions A1−A3 are satis�ed, then there exists C > 0, independent of
h, such that

∥p− ph∥1,Ω ≤ C
(
∥Gψ −Gψh∥+ ∥p− pI∥1,Ω + |p− pπ|1,h

)
,

for all pI ∈ Hh and for each pπ ∈ L2(Ω) such that pπ|K ∈ P1(K) for all K ∈ Th, where

∥Gψ −Gψh∥ := sup
qh∈Wh
qh ̸=0

|Gψ(qh)−Gψh(qh)|
∥qh∥1,Ω

.

Now, we will bound the term ∥Gψ −Gψh∥.
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Proposition 3.5.6. Let f ∈ L2(Ω) such that f |K ∈ H1(K) for all K ∈ Th. Let ψ ∈ H4(Ω) and
ψh ∈ X3

h be the unique solutions of the problems (3.2.2) and (3.3.21), respectively. Let Gψ(·)
and Gψh(·) be the linear functionals de�ned in (3.5.9) and (3.5.16), respectively. Then, there
exists C > 0, independent of h, such that

∥∥Gψ −Gψh
∥∥ ≤ Ch (∥ψ∥4,Ω + |f |1,h) .

Proof. Let qh ∈ Wh, then using the de�nition of Gψ(·) and Gψh(·), and the Cauchy-Schwarz
inequality, we have

|Gψ(qh)−Gψh(qh)| ≤
∑
K∈Th

∣∣∣∣∫
K

f ·
(
∇qh −Π0

K∇qh
)∣∣∣∣

+
∑
K∈Th

∣∣∣∣∫
K

(∇curl ψ)β · ∇qh − (∇Π2
Kcurl ψh)β ·Π0

K∇qh
∣∣∣∣

+
∑
K∈Th

∣∣∣∣∫
K

γcurl ψ · ∇qh − γΠ2
Kcurl ψh ·Π0

K∇qh
∣∣∣∣

+
∑
K∈Th

ν

∣∣∣∣∫
K

curl (∆ψ) · ∇qh − curl
(
Π1
K(∆ψh)

)
·Π0

K∇qh
∣∣∣∣

:= T1 + T2 + T3 + T4.

Now, repeating the arguments used in the proof of Proposition 4.23 of [133], we have that

T1 ≤ Ch|f |1,h∥qh∥1,Ω, (3.5.18)

T3 ≤ Ch(∥ψh∥X + |f |1,h + ∥ψ∥4,Ω)∥qh∥1,Ω, (3.5.19)

and

T4 ≤ Ch (∥ψ∥4,Ω + |f |1,h) ∥qh∥1,Ω. (3.5.20)

Thus, in what follows, we are going to estimate the term T2. We start by adding and
subtracting suitable terms, and employing the triangular inequality, we have that

T2 ≤
∑
K∈Th

∣∣∣∣∫
K

(∇curl ψ)β · (∇qh −Π0
K∇qh)

∣∣∣∣
+
∑
K∈Th

∣∣∣∣∫
K

[
∇(curl ψ −Π2

Kcurl ψh)
]
β ·Π0

K∇qh
∣∣∣∣

=: I + II.

(3.5.21)

We will bound the terms I and II. Indeed, we begin with the term I. By using the properties
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of the operator Π0
K , we get

I : =
∑
K∈Th

∣∣∣∣∫
K

[
(∇curl ψ)β −Π0

K

(
(∇curl ψ)β

)]
· (∇qh −Π0

K∇qh)
∣∣∣∣

≤
∑
K∈Th

∥(∇curl ψ)β −Π0
K

(
(∇curl ψ)β

)
∥0,K∥∇qh −Π0

K∇qh∥0,K

≤ C
∑
K∈Th

hK |(∇curl ψ)β|1,K∥∇qh∥0,K

≤ Ch

(∑
K∈Th

|(∇curl ψ)β|21,K

)1/2(∑
K∈Th

∥∇qh∥20,K

)1/2

≤ Ch∥(∇curl ψ)β∥1,Ω|qh|1,Ω
≤ Ch∥β∥W1

∞(Ω)∥∇(curl ψ)∥1,Ω∥qh∥1,Ω
≤ Ch∥ψ∥3,Ω∥qh∥1,Ω.

(3.5.22)

Now, we continue by estimating II (cf. (3.5.21)). By using the approximation properties
of operator Π2

K , we obtain that

II : =
∑
K∈Th

∣∣∣∣∫
K

[
∇(curl ψ −Π2

Kcurl ψh)
]
β ·Π0

K∇qh
∣∣∣∣

≤
∑
K∈Th

∥β∥L∞(K)∥∇(curl ψ −Π2
Kcurl ψh)∥0,K∥Π0

K∇qh∥0,K

≤ C∥β∥L∞(Ω)

∑
K∈Th

|curl ψ −Π2
Kcurl ψh|1,K∥∇qh∥0,K

≤ C
∑
K∈Th

(
|curl ψ −Π2

Kcurl ψ|1,K + |Π2
Kcurl (ψ − ψh)|1,K

)
∥∇qh∥0,K

≤ C
∑
K∈Th

(hK∥curl ψ∥1,K + CN |ψ − ψh|2,K) ∥∇qh∥0,K

≤ Ch(|f |1,h + ∥ψ∥4,Ω)∥qh∥1,Ω,

(3.5.23)

where we have added and subtracted the term Π2
Kcurl ψ, we used Lemma 3.3.3, Hölder in-

equality and (3.3.5). Then, inserting (3.5.22) and (3.5.23) into (3.5.21), we obtain

T2 ≤ Ch (∥ψ∥4,Ω + |f |1,h) ∥qh∥1,Ω. (3.5.24)

Finally, the proof follows from the estimates (3.5.18)-(3.5.20) and (3.5.24).

The following theorem provides the rate of convergence of our virtual element scheme
(3.5.17) to recover the �uid pressure. The proof follows from Propositions 3.5.5, 3.5.6, 3.5.3
and 3.5.4.

Theorem 3.5.5. Let f ∈ L2(Ω)2 such that f |K ∈ H1(K) for all K ∈ Th. Let ψ, ψh, p and ph
be the unique solutions of problems (3.2.2), (3.3.21), (3.5.7) and (3.5.17), respectively. Suppose
that A1−A3 are satis�ed, p ∈ H2(Ω) and ψ ∈ H4(Ω). Then, there exists C > 0, independent
of h, such that

∥p− ph∥1,Ω ≤ Ch (∥ψ∥4,Ω + |f |1,h) .
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3.6 Numerical results

In this section, we present three numerical experiments in order to illustrate the practical
performance of the proposed virtual element methods (3.3.21) and (3.5.17) and to con�rm the
theoretical results established in previous sections. We will test the method for the cases k = 2
and k = 3 on di�erent polygonal meshes.

Now, we introduce the bilinear forms SKD (·, ·) and SKcurl (·, ·) (cf. (2.3.8)) to complete the
virtual element discretization (3.3.21). We take (see [18, 58, 133]):

SKD (ψh, ϕh) := σK
Ndof
K∑
i=1

dofi(ψh)dofi(ϕh) ∀ψh, ϕh ∈ Xk
h(K),

SKcurl (ψh, ϕh) := σKγ

Ndof
K∑
i=1

dofi(ψh)dofi(ϕh) ∀ψh, ϕh ∈ Xk
h(K).

where for each polygon K ∈ Th, Ndof
K denotes the number of degrees freedom of Xk

h(K) and
dofi, with 1 ≤ i ≤ dim(Xk

h(K)), denotes the operator that to each smooth enough function
ϕ associates the ith local degree of freedom dofi(ϕ) and the parameter σK , σKγ > 0 are a
multiplicative factors to take into account the physical magnitudes and the h-scaling. On the
other hand, the bilinear form SK∇ (·, ·) (cf. (3.5.11)), is given by (see [27, 134]):

SK∇ (ph, qh) :=

NK∑
i=1

ph(vi)qh(vi) ∀ph, qh ∈ Wh(K).

We have tested the method by using the following families of meshes:

� T 1
h : Distorted concave rhombic quadrilaterals;

� T 2
h : Trapezoidal meshes;

� T 3
h : Sequence of CVT (Centroidal Voronoi Tessellation).

Figure 3.1: Sample meshes. T 1
h , T 2

h and T 3
h .
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In order to compute the VEM errors, we consider the following computable error quantities.

ei(ψ) = error(ψ,Hi) :=
( ∑
K∈Th

|ψ − Πk,D
K ψh|2i,K

)1/2
, i = 0, 1, 2.

e1(p) = error(p,H1) :=
( ∑
K∈Th

∣∣p− Π∇
Kph

∣∣2
1,K

)1/2
,

e0(ω) = error(ω,L2) :=
( ∑
K∈Th

∥∥ω − Π0
K(∆ψh)

∥∥2
0,K

)1/2
.

Also, if h, h′ denote two consecutive mesh sizes with their respective errors ei and e′i, then
we will compute experimental rates of convergence for each variable as follows:

ri(·) :=
log(ei(·)/e′i(·))

log(h/h′)
, i = 0, 1, 2.

3.6.1 Test 1. Smooth solution

In this test we solve the Oseen equations (3.2.1) on the square domain Ω := (0, 1)2. We take
ν = 1, γ = 100, and the load term f and boundary conditions in such a way that the analytical
solution is given by:

u(x, y) =

(
2x2(1− x)2y(y − 1)(2y − 1)

−2y2(1− y)2x(x− 1)(2x− 1)

)
, ω(x, y) = rotu = −∆ψ,

p(x, y) = x3 + y3 − 1

2
and ψ(x, y) = x2(1− x)2y2(1− y)2.

Moreover, we consider the following convective velocity:

β(x, y) =

(
sin(x) sin(y)
cos(x) cos(y)

)
.

Table 3.1 shows the convergence history of the virtual element scheme (3.3.21) applied to
our test problem for k = 2. In addition, Table 3.2 shows the convergence history of the virtual
element schemes (3.3.21) and (3.5.17) for k = 3. In both cases, we have considered meshes T 1

h .
It can be seen from Tables 3.1 and 3.2 that the methods converge with an optimal order for

all the variables.
Figure 3.2 shows plots of the exact (top) and computed (bottom) stream-function, pressure

and vorticity, obtained with the virtual element methods analyzed in this chapter, using the
meshes T 1

h , with h = 1/32, k = 3 and ν = 1.
In Figure 3.3 we depict approximate velocity �eld obtained from the discrete stream-function

using the meshes T 1
h , with h = 1/32, k = 3, ν = 1 and γ = 100.

3.6.2 Test 2. Solution with boundary layer

In this numerical experiment, we solve the Oseen equations (3.2.1) on the square domain
Ω := (0, 1)2. We take ν = 10−3, γ = 50 and the load term f and boundary conditions in such
a way that the analytical solution is given by:

u(x, y) =
2

λ2

(
x2y(eλ(x−1) − 1)2(eλ(y−1) − 1)(eλ(y−1) + λyeλ(y−1) − 1)
−xy2(eλ(y−1) − 1)2eλ(x−1) − 1)(eλ(x−1) + λxeλ(x−1) − 1)

)
,
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h e0(ψ) r0(ψ) e1(ψ) r1(ψ) e2(ψ) r2(ψ) e0(ω) r0(ω)

1/4 7.473458e-4 � 3.931137e-3 � 3.515403e-2 � 2.579728e-2 �
1/8 1.219438e-4 2.61 8.002679e-4 2.29 1.606165e-2 1.13 8.728651e-3 1.56
1/16 1.750743e-5 2.80 1.633574e-4 2.29 7.852990e-3 1.03 3.750317e-3 1.21
1/32 3.151107e-6 2.47 3.947501e-5 2.04 3.894174e-3 1.01 1.738230e-3 1.10
1/64 6.698881e-7 2.23 9.958959e-6 1.98 1.942167e-3 1.00 8.414948e-4 1.04

Table 3.1: Test 1. Errors and experimental rates for the stream-function ψh and vorticity ωh,
using the meshes T 1

h , k = 2, ν = 1 and γ = 100.

h e0(ψ) r0(ψ) e1(ψ) r1(ψ) e2(ψ) r2(ψ) e1(p) r1(p) e0(ω) r0(ω)

1/4 1.852106e-4 � 1.106299e-3 � 1.949383e-2 � 3.158359e-1 � 1.970323e-2 �
1/8 1.405414e-5 3.72 1.110736e-4 3.31 5.057026e-3 1.94 1.622020e-1 0.96 5.128756e-3 1.94
1/16 1.027443e-6 3.77 1.160837e-5 3.25 1.285563e-3 1.97 8.253523e-2 0.97 1.303501e-3 1.97
1/32 7.173524e-8 3.84 1.230588e-6 3.23 3.062095e-4 2.06 4.055215e-2 1.02 3.103413e-4 2.07
1/64 4.450005e-9 4.01 1.352796e-7 3.18 7.017355e-5 2.12 1.986404e-2 1.02 7.098042e-5 2.12

Table 3.2: Test 1. Errors and experimental rates for the stream-function ψh, pressure ph and
vorticity ωh using the meshes T 1

h , k = 3, ν = 1 and γ = 100.

Figure 3.2: Test 1. Exact (top panels) and computed (bottom panels) stream-function, pressure
and vorticity, using the VEM methods (3.2.2) and (3.5.17) with T 1

h , h = 1/32, k = 3 and ν = 1.
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Figure 3.3: Test 1. Velocity �eld obtained from the discrete stream-function with T 1
h , h = 1/32,

k = 3 and ν = 1.

h e0(ψ) r0(ψ) e1(ψ) r1(ψ) e2(ψ) r2(ψ) e0(ω) r0(ω)

1/8 2.784694e-4 � 2.973866e-3 � 9.076308e-2 � 5.838607e-2 �
1/16 1.030198e-4 1.43 1.690738e-3 0.81 7.965350e-2 0.18 4.042055e-2 0.53
1/32 1.926182e-5 2.14 6.324576e-4 1.41 5.785738e-2 0.46 3.638668e-2 0.15
1/64 1.992073e-6 3.27 1.607822e-4 1.97 3.321376e-2 0.88 2.211350e-2 0.71
1/128 3.418173e-7 2.54 3.208248e-5 2.32 1.593417e-2 1.05 9.492817e-3 1.22

Table 3.3: Test 2. Errors and experimental rates for the stream-function ψh and vorticity ωh,
using the meshes T 2

h , k = 2, ν = 10−3 and γ = 50.

ω(x, y) = rotu = −∆ψ, p(x, y) = ex+y − (e− 1)2,

and

ψ(x, y) =
1

λ2
x2y2(1− eλ(x−1))2(1− eλ(y−1))2,

where λ = 0.5/
√
ν, while the convective velocity is β = (1, 1). We observe that ψ has a

boundary layer on the top-right corner of the domain for small values of ν.

Table 3.3 shows the convergence history of our virtual element scheme (3.3.21) applied to
the present test for k = 2, while Table 3.4 shows the convergence history of the virtual element
schemes (3.3.21) and (3.5.17) for k = 3. In both cases, the set of decompositions utilized is T 2

h .

In this numerical example, we notice that the rate of convergence predicted by Theo-
rems 3.4.1, 3.5.2 and 3.5.5 is attained by all the variables, in the corresponding norms. However,
in Table 3.4 we observe a degeneracy of the optimal convergence rate for the stream-function
in the L2-norm, we attribute this to the existence of the boundary layer on the top-right corner
of the domain.

Figure 3.4 shows plots of the exact (top) and computed (bottom) stream-function, pressure
and vorticity, obtained with the virtual element methods analyzed in this work, using the
meshes T 2

h , with h = 1/64, k = 3, ν = 10−3 and γ = 50.

Figure 3.5 shows the approximate velocity �eld obtained from the discrete stream-function
and the streamlines using the meshes T 2

h , with h = 1/64, k = 3, ν = 10−3 and γ = 50.
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h e0(ψ) r0(ψ) e1(ψ) r1(ψ) e2(ψ) r2(ψ) e1(p) r1(p) e0(ω) r0(ω)

1/8 2.197659e-4 � 2.548761e-3 � 8.465258e-2 � 2.466608e-1 � 8.483406e-2 �
1/16 4.584130e-5 2.26 1.000595e-3 1.34 5.882760e-2 0.52 1.244517e-1 0.98 5.890052e-2 0.52
1/32 3.579805e-6 3.67 2.019404e-4 2.30 2.659083e-2 1.14 6.250501e-2 0.99 2.659606e-2 1.14
1/64 2.381437e-7 3.90 3.314490e-5 2.60 8.793503e-3 1.59 3.130231e-2 0.99 8.787307e-3 1.59
1/128 3.084086e-8 2.94 4.223090e-6 2.97 2.148259e-3 2.03 1.565467e-2 0.99 2.144776e-3 2.03

Table 3.4: Test 2. Errors and experimental rates for the stream-function ψh, pressure ph and
vorticity ωh using the meshes T 2

h , k = 3, ν = 10−3 and γ = 50.

Figure 3.4: Test 2. Exact (top panels) and computed (bottom panels) stream-function, pressure
and vorticity, using the VEM methods (3.2.2) and (3.5.17) with T 2

h , h = 1/64, k = 3, ν = 10−3

and γ = 50.

3.6.3 Test 3. Solution with non homogeneous Dirichlet boundary

conditions.

The aim of this numerical test is twofold: consider small values of viscosity and solve the
Oseen equations (3.2.1) with non homogeneous boundary conditions on the square domain
Ω := (0, 1)2 with the proposed scheme (3.3.21) and with the scheme obtained by using the

projection Πk,∇⊥

K to discretize (3.3.11)-(3.3.12) (cf. Remark 3.3.1).

We take ν = 10−7, γ = 100, β = (1, 1) and the load term f and boundary conditions in
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Figure 3.5: Test 2. Velocity �eld and streamlines obtained from the discrete stream-function
with T 2

h , k = 3, ν = 10−3 and γ = 50.

such a way that the analytical solution is given by:

u(x, y) =
1

4π2

(
ex

2+y2 sin(2πx)(y cos(2πy)− π sin(2πy))

−ex2+y2 cos(2πy)(x sin(2πx) + π cos(2πx))

)
, ω(x, y) = rotu,

p(x, y) = sin(x)− sin(y) and ψ(x, y) =
1

8π2
sin(2πx) cos(2πy)ex

2+y2 .

Table 3.5 shows the convergence history of the scheme (3.3.21) and the scheme obtained by

using the projection Πk,∇⊥

K to discretize (3.3.11)-(3.3.12) for k = 2 with meshes T 3
h .

In this numerical example, we notice that the rate of convergence predicted by Theo-
rems 3.4.1 and 3.5.2 is attained by all the variables for both methods. However, we have

not proved any order of convergence for the second method (denoted by Πk,∇⊥

K ).

h e2(ψ) r2(ψ) e0(ω) r0(ω) e2(ψ) r2(ψ) e0(ω) r0(ω)

Πk−1
K curl Πk,∇

⊥

K

1/4 7.3531e-1 � 4.1926e-1 � 7.0801e-1 � 3.4725e-1 �
1/8 3.8849e-1 0.92 1.4227e-1 1.55 3.7940e-1 0.90 1.0708e-1 1.69
1/16 2.1101e-1 0.88 7.3202e-2 0.95 2.0710e-1 0.87 6.0683e-2 0.81
1/32 1.0322e-1 1.03 3.0794e-2 1.24 1.0136e-1 1.03 2.3762e-2 1.35
1/64 5.0594e-2 1.02 1.4993e-2 1.03 4.9576e-2 1.03 1.1003e-2 1.11
1/128 2.5125e-2 1.00 6.8078e-3 1.13 2.4766e-2 1.00 5.3181e-3 1.04

Table 3.5: Test 3. Errors and experimental rates for the stream-function ψh and vorticity ωh,
using the meshes T 3

h , k = 2, ν = 10−7 and γ = 100.



Chapter 4

Virtual elements for the Navier�Stokes

system: stream function form and

primitive variables recovery algorithms

4.1 Introduction

Let Ω ⊂ R2 be a bounded simply connected domain, then we can associate to a divergence-
free velocity �eld u a scalar function ψ, such that u = curl ψ, which is called stream-function.
Employing this relation, we have that the incompressible Navier�Stokes equations formulated
in terms of the stream-function are given by the following nonlinear fourth-order problem (for
more details, see for instance [103, Chap. IV, sect. 2.1]: given a su�ciently smooth force
density f : Ω → R2, seek ψ : Ω → R, such that

ν∆2ψ − curl ψ · ∇(∆ψ) = rot f in Ω,

ψ = g0, ∂nψ = g1 on ∂Ω,
(4.1.1)

where ν > 0 represent the �uid viscosity and ∂n denotes the normal derivative, g0 and g1
are prescribed boundary data. This system describes the motion of an incompressible viscous
�uid in the domain Ω, whose applications are found in di�erent areas and sciences, such as:
engineering, oceanography, biomedicine and environmental processes, among others. Due to
the importance of its applications, during the past decades a great variety of numerical methods
have been developed to approximate the solution of the Navier�Stokes equations. Among these
methods, we mention those based on the mixed Galerkin schemes to discretize the standard
velocity-pressure formulation, for which the discrete spaces must be adequately constructed in
such a way that they satisfy the inf-sup condition to ensure the well-posedness of the mixed
discrete problem (see [103]). Another restrictive but desirable condition for these schemes is
the one associated with the incompressibility condition, where the error components are partly
decouple and for which di�erent approaches have been devoted to the construction of schemes
satisfying this property (see for instance [109, 35, 41]).

For the two dimensional case, by introducing the stream-function variable ψ, the classical
velocity-pressure formulation is reduced in the single nonlinear fourth-order PDEs (cf. (4.1.1)),
whose discretization does not need the construction of discrete inf-sup stable spaces and the
incompressibility constraint is automatically satis�ed by construction. Furthermore, the for-
mulation (4.1.1) in addition to having a single unknown, has the advantage of avoiding the

63
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di�culties associated with the de�nition of boundary values for the vorticity �eld, present in
stream-function�vorticity formulation. Salient features related to the naturally skew-symmetry
property of the resulting trilinear form, allows the development of more direct stability and
convergence arguments (see below Remark 4.3.1). We observe that both the velocity and pres-
sure are not present in the system (4.1.1). However, if these �elds are required them can
be recovered through stream-function postprocessing (see for instance [71, 115, 133]). In the
present work, we propose high-order approximations for the primitive variables. Furthermore,
we provide a suitable approximations for the vorticity �eld, via simple postprocessing formula.
The above facts turn the stream-function form into a very attractive formulation and for this
reason di�erent works have been devoted to the development and analysis of e�cient schemes
to approximate the Navier�Stokes equations formulated in terms of the stream-function. For
instance, in [71, 115, 91, 143] conforming Finite Element Methods (FEMs), bivariate spline and
hp-version discontinuous Galerkin FEMs have been proposed and analyzed. In Reference [95] a
C1-conforming FEM has been developed for the stationary Quasi-Geostrophic equations, which
is strongly related with the formulation (4.1.1).

In addition to modeling �uid �ow problems in stream-function form, the fourth-order PDEs
are present in the modeling of di�erent physical phenomenon, for instance, these kinds of equa-
tions also arise naturally in plate bending problems and the Cahn�Hilliard phase-�eld model.
Due to its importance and challenging nature, this topic has been a very active area of research,
and a wide variety of numerical approaches have been presented for solving these systems. For
instance, conforming and nonconforming FE schemes [79, 68]), C0-IP methods [142, 101, 53],
among others. In particular, to discretize fourth-order problems in primal form, using the clas-
sical conforming FE spaces, it is well know that a notable disadvantage arises: the construction
of these spaces involve high-order polynomials and a large number of degrees of freedom, which
is often regarded as a challenging endeavor, particularly from the computational viewpoint,
even when dealing with the classical triangular elements (see [79, Chap. 6, sect. 6.1]). In order
to overcome this inconvenience, we consider the approach presented in [58, 77, 18] to introduce
C1-virtual schemes of arbitrary order k ≥ 2 to solve numerically the nonlinear fourth-order
Navier�Stokes problem (cf. (4.1.1)). The Virtual Element Method (in short, VEM) has been
originally introduced in [27] and it belongs to the group of polytopal Galerkin schemes for solving
PDEs, which have received substantial attention in recent decades due to their inherent versa-
tility in dealing with complex geometries [87, 62, 88]. Since its introduction the VEM has been
employed to discretize a wide variety of problems, for instance in [65, 58, 77, 18, 56, 139, 116, 1],
where second- and fourth-order problems have been developed and analyzed. In these works
can be observed the ability of VEMs to develop high-order numerical schemes to discretize
PDEs on general polytopal meshes. Moreover, it can observed another important feature of the
VEM; its capability to construct discrete schemes with high-regularity, by using few degrees of
freedom and low polynomial degrees. For instance, the lowest order polynomial degree is k = 2
and it used only 3 degrees of freedom per mesh vertex (the function and its gradient values
vertex). On the other hand, in the context of �uid mechanic, among the models studied by
using the VEM, we list [17, 35, 41, 100, 133, 3].

The main objectives of the present contribution are the following: i) the design of high-
order stream VEMs on polygonal meshes and the development of novel error analysis for
these methods: we design C1-VEMs of high-order for solving the Navier�Stokes equations
in stream-function form on polygonal meshes. By using the important advantage of natu-
ral skew-symmetry property of the resulting trilinear form and others standard arguments of
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the VEM, we write directly an abstract convergence result for our nonlinear schemes, which
allows the derivation of an optimal error estimate in H2-norm, under minimal regularity of the
weak stream-function solution (namely, ψ ∈ H2+s(Ω), with s > 0, see below Theorem 4.4.3).
Moreover, we write new optimal error estimates in the H1- and L2-norms by using duality ar-
guments. In addition, we extend these schemes to the system with boundary conditions on
the pressure [45]; ii) the development of algorithms to recover additional variables of physical
interest: we present procedures to compute further important �elds in �uid mechanics, such as:
the velocity, pressure and vorticity. More precisely, we propose high-order approximations for
the velocity and vorticity �elds via postprocessing formulas from the discrete stream-function
and employing adequate polynomial projections. Such formulas are directly computable from
the degrees of freedom and allow to obtain optimal error estimates for these postprocessed vari-
ables. For pressure recovery technique we consider an additional second-order elliptic problem
with right hand side coming from the source term and the discrete virtual stream-function. In
order to discretize this linear second-order problem, we propose a scheme of high-order based
on the enhanced C0-conforming VE approach from [7, 65]; iii) the assessment of the numerical
performance by using the stream-function approach: we provide a set of benchmark tests that
highlight interesting features of the present stream VE schemes, including the approximation
of the Kovasznay and lid-driven cavity solutions on general polygonal meshes and using small
values of ν. In addition, we investigate the behaviour of our VEM considering a hydrostatic
�uid problem. We observed that the results obtained are in accordance with another exactly
divergence-free Galerkin schemes, where the partial decoupling of the velocity and pressure er-
rors leads a positive e�ect on the velocity computation (see [35] in the VEM approach). Finally,
we present two numerical examples, which validates our new theoretical �ndings of item i) and
the extension for mixed boundary conditions.

A brief outline of the chapter follows. In Section 4.2 we introduce a variational formulation
of problem (4.1.1) and we establish its well-posedness. In Section 4.3 we present the C1-VE
discretization. In Section 4.4 we prove the existence and uniqueness of the discrete problem.
Furthermore, in the same section we derive optimal error estimates in H2, H1- and L2-norms for
the stream-function. In Section 4.5 we present strategies to compute the velocity, pressure and
vorticity �elds, while in Section 4.6, we discuss the extension to the Navier�Stokes system with
boundary conditions on the pressure. Finally, in Section 4.7 �ve numerical test are presented.

4.2 Weak stream-function form and its well-posedness

For simplicity, we will work with homogeneous boundary conditions in the system (4.1.1),
i.e, ψ = ∂nψ = 0 on Γ. Nevertheless, such restriction does not a�ect the generality of the
forthcoming analysis.

A weak form of problem (4.1.1), is given by: seek ψ ∈ W := H2
0(Ω), such that

νA(ψ, ϕ) + B(ψ;ψ, ϕ) = F(ϕ) ∀ϕ ∈ W , (4.2.1)

where the bilinear form A : W × W → R, the trilinear form B : W × W × W → R and the
linear functional F : W → R, are given by the following expressions:

A(φ, ϕ) := (D2φ,D2ϕ)0,Ω, ∀φ, ϕ ∈ W , (4.2.2)

B(ζ;φ, ϕ) := (∆ζ curl φ,∇ϕ)0,Ω ∀ζ, φ, ϕ ∈ W , (4.2.3)

F(ϕ) := (f , curl ϕ)0,Ω ∀ϕ ∈ W . (4.2.4)
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In what follows, we will assume that the force density satis�es f ∈ L2(Ω) and we will endow it
with the norm: ∥φ∥W := A(φ, φ)1/2 ∀φ ∈ W .

Using the Banach �xed-point Theorem, we prove that problem (4.2.1) is well-posed. More
precisely, we have the following result.

Theorem 4.2.1. If
λ := ĈBCFν

−2∥f∥0,Ω < 1, (4.2.5)

then there exists a unique ψ ∈ W solution to problem (4.2.1).

We �nish this section with the following remark regarding the PDEs (4.1.1).

Remark 4.2.1. We recall that the steady Navier�Stokes equations in its standard velocity-
pressure formulation reads as: given the su�ciently smooth force density f , seek (u, p) such
that

−ν∆u+ (u ·∇)u+∇p = f , div u = 0 in Ω,

u = g on Γ, (p, 1)0,Ω = 0,
(4.2.6)

where u : Ω → R2 is the velocity �eld, p : Ω → R is the �uid pressure and g is a boundary data.
We have that the above problem is equivalent to system (4.1.1). Moreover, the set of boundary
conditions g0 and g1 for the stream-function can be deduced from the boundary condition g for
the primitive variable u (for more details, see for instance [103, Chap. I, sect. 5.2 and Chap.
IV, sect. 2.2]).

4.3 The C1-virtual element approximation

In this section we will introduce the C1-conforming VEMs of high-order k ≥ 2, for the
numerical approximation of problem (4.2.1). We start by introducing some basic tools and
notations to construct the discrete scheme. Then, we introduce the local and global virtual
spaces along with the degrees of freedom. Finally, we present the discrete stream-function
formulation.

Notation and mesh assumptions

Henceforth, we will adopt the usually notation for the virtual element framework (see for in-
stance [27, 65, 133]). In particular, we will denote by K a general polygon, Let Ωh be a sequence
of decompositions of Ω into general non-overlapping polygons K, where h := maxK∈Ωh hK . Fur-
thermore, for any K and each integer ℓ ≥ 0 we denote by Pℓ(Ωh), the classical discontinuous
piecewise ℓ-order polynomial space. Moreover, for t > 0, we consider the broken Hilbert space:
Ht(Ωh) :=

{
ϕ ∈ L2(Ω) : ϕ|K ∈ Ht(K) ∀K ∈ Ωh

}
, endowed with the following broken semi-

norm |ϕ|t,h :=
( ∑

K∈Ωh |ϕ|
2
t,K

)1/2
.

For the theoretical analysis, we suppose that Ωh satis�es the following assumptions: there
exists a real number ρ > 0 such that, every K ∈ Ωh, we have

A1 : K is star-shaped with respect to every point of a ball of radius ≥ ρhK ;

A2 : the length he of every edge e ⊂ ∂K, satis�es he ≥ ρhK .
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4.3.1 Virtual spaces and degrees of freedom

With the notations presented in the above subsection we will introduce the VE spaces and
the degrees of freedom. For every polygon K ∈ Ωh and any integer k ≥ 2, we consider the
number r := max{k, 3} and the following �nite dimensional space introduced in [77]:

W̃h
k(K) :=

{
ϕh ∈ H2(K) ∩ C1(∂K) : ∆2ϕh ∈ Pk−2(K), ϕh|e ∈ Pr(e), ∂neKϕh ∈ Pk−1(e) ∀e ∈ ∂K

}
,

Next, for ϕh ∈ W̃h
k(K), we introduce the following set of linear operators:

� DW1 : the values of ϕh(vi) for all vertex vi of the polygon K;

� DW2 : the values of hvi∇ϕh(vi) for all vertex vi of the polygon K;

� DW3 : for k ≥ 3, the moments: (q, ∂neKϕh)0,e ∀q ∈ Mk−3(e), ∀ edge e;

� DW4 : for r ≥ 4, the moments: h−1
e (q, ϕh)0,e ∀q ∈ Mr−4(e), ∀ edge e;

� DW5 : for k ≥ 4, the moments: h−2
K (q, ϕh)0,K ∀q ∈ Mk−4(K), ∀ polygon K,

where for each vertex vi we set hvi as the average of the diameters of the elements having vi
as a vertex. In order to construct an approximation for the form A(·, ·), we de�ne the operator
P0 : C

0(∂K) → P0(K), as the following average:

P0φ =
1

NK

NK∑
i=1

φ(vi), (4.3.1)

where vi, 1 ≤ i ≤ NK , are the vertices of K.
Next, for each polygon K, we de�ne the projector Πk,D

K : W̃h
k(K) → Pk(K) ⊆ W̃h

k(K), as
the solution of the local problems:

AK(ϕh − Πk,D
K ϕh, qk) = 0 ∀qk ∈ Pk(K),

P0(ϕh − Πk,D
K ϕh) = 0, P0(∇(ϕ− Πk,D

K ϕh)) = 0.

For each K ∈ Ωh and any integer k ≥ 2 the local enhanced virtual space is given by:

Wh
k(K) :=

{
ϕh ∈ W̃h

k(K) :
(
q∗ , ϕh − Πk,D

K ϕh
)
0,K

= 0 ∀q∗ ∈ M∗
k−3(K) ∪M∗

k−2(K)
}
,

where M∗
k−3(K) and M∗

k−2(K) are scaled monomials of degree k − 3 and k − 2, respectively,
with the convention that M∗

−1(K) := ∅. Besides, we have that the sets of linear operators

DW1 − DW5 constitutes a set of degrees of freedom for Wh
k(K) and the operator Πk,D

K :
Wh

k(K) → Pk(K) is computable using the degrees of freedom DW1−DW5 For further details,
see for instance [77, 133] (see also [58, 7]).

Now, for every decomposition Ωh of Ω into polygons K and for any k ≥ 2, we de�ne
the global virtual space to the numerical approximation of the solution of problem (4.2.1), as
follows:

Wh
k :=

{
ϕh ∈ W : ϕh|K ∈ Wh

k(K) ∀K ∈ Ωh

}
.
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4.3.2 Polynomial projections and the discrete formulation

In this subsection we introduce other polynomial projections, which will be useful to build
an approximation of forms B(·; ·, ·) and F(·) (cf. (4.2.3) and (4.2.4), respectively). We start
denoting by Πk−2

K : L2(K) → Pk−2(K) the usual L2(K)-projection onto the polynomial space
Pk−2(K). Next, we will consider the projection onto the vectorial polynomial space Pk−1(K),
i.e., Πk−1

K : L2(K) → Pk−1(K).
The following lemma establishes that certain polynomial functions are computable onWh

k(K),
using only the information of the degrees of freedom DW1−DW5.

Lemma 4.3.1. For each ϕh ∈ Wh
k(K) the polynomial functions Πk−2

K ϕh, Π
k−2
K ∆ϕh, Π

k−1
K ∇ϕh

and Πk−1
K curl ϕh are computable using only the information of the degrees of freedom DW1−

DW5.

Proof. To prove that the polynomial function Πk−2
K ∆ϕh is computable, let ϕh ∈ Wh

k(K) and
q ∈ Pk−2(K), then using the de�nition of the projection Πk−2

K and integration by parts, we have

(q,Πk−2
K ∆ϕh)0,K = (q,∆ϕh)0,K = (ϕh,∆q)0,K − (ϕh, ∂nKq)0,∂K + (q, ∂nKϕh)0,∂K .

we observe that all term above are fully computable using the information of DW1 − DW5.
The remaining of the proof follow from the arguments presented in [65, 77, 133].

Now, using the operators previously de�ned, we will construct the discrete version of the
forms de�ned in (4.2.2),(4.2.3) and (4.2.4). First, let SK : Wh

k(K) × Wh
k(K) → R be any

symmetric positive de�nite bilinear forms to be chosen as to satisfy:

c0AK(ϕh, ϕh) ≤ SK(ϕh, ϕh) ≤ c1AK(ϕh, ϕh) ∀ϕh ∈ Ker(Πk,D
K ), (4.3.2)

with c0 and c1 positive constants independent of K. We will choose the following representation
satisfying (4.3.2) (see [27, 58, 133]):

SK(φh, ϕh) := h−2
K

Ndof
K∑
i=1

dofi(φh)dofi(ϕh),

where Ndof
K := dim(Wh

k(K)).
Next, we consider the following discrete local bilinear form, Ah

K : Wh
k(K) × Wh

k(K) → R
approximating the continuous form AK(·, ·).

Ah
K(φh, ϕh) := AK

(
Πk,D
K φh,Π

k,D
K ϕh

)
+ SK

(
(I− Πk,D

K )φh, (I− Πk,D
K )ϕh

)
∀φh, ϕh ∈ Wh

k(K).

For the approximation of the local trilinear form BK(·; ·, ·), we consider set

BhK(ζh;φh, ϕh) :=
(
Πk−2
K ∆ζhΠ

k−1
K curl φh, Π

k−1
K ∇ϕh

)
0,K

∀ζh, φh, ϕh ∈ Wh
k(K). (4.3.3)

Thus, for all ζh, φh, ϕh ∈ Wh
k , we de�ne the global bilinear form and trilinear form as follows:

Ah : Wh
k ×Wh

k → R, Ah(φh, ϕh) :=
∑
K∈Ωh

Ah
K(φh, ϕh), (4.3.4)

Bh : Wh
k ×Wh

k ×Wh
k → R, Bh(ζh;φh, ϕh) :=

∑
K∈Ωh

BhK(ζh;φh, ϕh). (4.3.5)
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We recall the forms de�ned above are computable using the degrees of freedom DW1−DW5.
In addition, we have that the trilinear form Bh(·; ·, ·) is immediately extendable to the whole
W , and the local discrete bilinear form Ah

K(·, ·) satis�es the usual k-consistency and stability
VEM properties (see for instance [3, Proposition 3.6]).

We consider the following computable approximation of the right hand side

Fh(ϕh) :=
∑
K∈Ωh

(Πk−1
K f , curl ϕh)0,K ≡

∑
K∈Ωh

(f ,Πk−1
K curl ϕh)0,K ∀ϕh ∈ Wh

k . (4.3.6)

We �nish this section by presenting the discrete problem for the numerical approximation
of system (4.2.1).

The discrete stream-function formulation reads as: seek ψh ∈ Wh
k , such that

νAh(ψh, ϕh) + Bh(ψh;ψh, ϕh) = Fh(ϕh) ∀ϕh ∈ Wh
k , (4.3.7)

where Ah(·, ·) is the discrete bilinear form de�ned in (4.3.4), Bh(·; ·, ·) is the discrete trilinear
form de�ned in (4.3.5), and Fh(·) is the functional introduced in (4.3.6).

Remark 4.3.1. We note that the discrete form Bh built in (4.3.5), preserves the natural skew-
symmetry property of the continuous version B (cf. (4.2.3)). Thus, at discrete level there
is no requirement to add any extra term to ensure this property, unlike velocity-pressure VE
discretizations, where a transpose term is necessary added (see for instance [35] in the con-
forming approach). This important fact, allows to establish stability and convergence of our
schemes, by using more direct arguments (see below Section 4.4). Besides, advantages from the
computational viewpoint can be observed.

4.4 Theoretical analysis

In this section we develop a rigorous analysis for the method proposed in Section 4.3. In
particular, we establish that the discrete problem (4.3.7) is well-posed by using the skew-
symmetry property of the discrete trilinear form and the classical Banach �xed-point Theorem.
Furthermore, we provide optimal a priori error estimates for the discrete stream-function in
H2-norm and using duality arguments we also provide an error estimate in H1- and L2-norms.

We begin this section recalling the boundedness of projections Πk−2
K and Πk−1

K with respect
to general semi-norms, which will play an important role in the forthcoming sections. More
precisely, given p > 1, there exists Cbd ≥ 1, independent of K, such that (for more details, see
for instance [100]):

|Πk−2
K v|Wt

p(K) ≤ Cbd|v|Wt
p(K) ∀v ∈ Wt

p(K), 0 ≤ t ≤ k − 1, k ≥ 2, (4.4.1)

|Πk−1
K v|Wt

p(K) ≤ Cbd|v|Wt
p(K) ∀v ∈ Wt

p(K), 0 ≤ t ≤ k, k ≥ 1. (4.4.2)

Also, we recall the following Sobolev embeddings: given a real t > 0, we have H1+t(Ω) ↪→
Wt

4(Ω), i.e., there exists Csob > 0 independent of h, such that

|v|Wt
4(Ω) ≤ Csob∥v∥1+t,Ω ∀v ∈ H1+t(Ω). (4.4.3)

The following lemma summarize some properties of the discrete forms de�ned in Sec-
tion 4.3.2. These properties will be used to establish the well-posedness of the discrete problem
(4.3.7).
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Lemma 4.4.1. There exist positive constants α1, α2 and Ĉh, independent of h, such that for
any virtual functions ζh, φh, ϕh ∈ Wh

k the forms de�ned in (4.3.4), (4.3.5) and (4.3.6) satis�es
the following properties:

|Ah(φh, ϕh)| ≤ α1 ∥φh∥W∥ϕh∥W , Ah(ϕh, ϕh) ≥ α2 ∥ϕh∥2W , (4.4.4)

Bh(ζh;φh, ϕh) ≤ Ĉh∥ζh∥W∥φh∥W∥ϕh∥W , Bh(ζh;ϕh, ϕh) = 0, (4.4.5)

Proof. The proof follows from the de�nition of the corresponding forms and standard argu-
ments.

4.4.1 Fixed-point strategy

In order to prove the well-posedness of problem (4.3.7), we will establish a �xed-point
strategy. Indeed, given ξh ∈ Wh

k , we de�ne the operator:

T h : Wh
k −→ Wh

k

ξh 7−→ T h(ξh) = φh,

where φh is the solution of the following linear problem: seek φh ∈ Wh
k , such that

Nξh(φh, ϕh) := νAh(φh, ϕh) + Bh(ξh;φh, ϕh) = Fh(ϕh) ∀ϕh ∈ Wh
k .

By employing Lemma 4.4.1 and the Lax-Milgram Theorem we prove that the operator T h

is well-de�ned. More precisely, given ξh ∈ Wh
k , there exists a unique φh ∈ Wh

k such that
T h(ξh) = φh.

Now, we consider the ball Kh :=
{
ϕh ∈ Wh

k : ∥ϕh∥W ≤ CFh(α2ν)
−1∥f∥0,Ω

}
, and using the

previous lemma, we have that T h(Kh) ⊆ Kh. Observe that the problem (4.3.7) is well-posed if
only if T h has a unique point-�xed in Kh.

In order to demonstrate the existence and uniqueness, from now on, we make the following
assumption:

λh := ĈhCFh(α2ν)
−2∥f∥0,Ω < 1. (4.4.6)

The following result establishes the well-posedness of problem (4.3.7).

Theorem 4.4.1. If the assumption (4.4.6) is satis�ed, then T h : Kh → Kh is a contraction
mapping. As a consequence, there exists a unique ψh ∈ Wh

k solution to problem (4.3.7) satisfying
the following dependence of the data

∥ψh∥W ≤ CFh(α2ν)
−1∥f∥0,Ω. (4.4.7)

Proof. The proof follows form standard arguments and the Banach point-�xed Theorem.

4.4.2 Error estimates

In the present section we develop an error analysis for the VE scheme presented in Sec-
tion 4.3. First, we will establish some preliminary error estimates, which will play an important
role in the forthcoming sections.
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Preliminary results

We start by recalling the following approximation result for polynomials on star-shaped
domains (see, for instance [54]).

Proposition 4.4.1. If the assumption A1 is satis�ed, then there exists a constant C > 0, such
that for every ϕ ∈ Hm(K), there exists ϕπ ∈ Pk(K), k ≥ 0, such that

∥ϕ− ϕπ∥t,K ≤ Chm−t
K |ϕ|m,K , 0 ≤ m ≤ k + 1, t = 0, 1, . . . , [m],

where [m] denoting the largest integer equal to or smaller than m ∈ R.

We have the following approximation properties for the projectors Πk−2
K and Πk−1

K with
respect to general Sobolev semi-norms (see, for instance [54] and [100]).

Proposition 4.4.2. Assume that A1 is satis�ed. Then for each K ∈ Ωh and p > 1, there
exists Caprx > 0, independent of K, such that

|v − Πk−2
K v|Wt

p(K) ≤ Caprxh
m−t
K |v|Wm

p (K) ∀v ∈ Wm
p (K), 0 ≤ t ≤ m ≤ k − 1, k ≥ 2,

|v −Πk−1
K v|Wt

p(K) ≤ Caprxh
m−t
K |v|Wm

p (K) ∀v ∈ Wm
p (K), 0 ≤ t ≤ m ≤ k, k ≥ 1.

Now, we present the estimate for the interpolant ϕI ∈ Wh
k (see [58, 77]).

Proposition 4.4.3. Assume that A1 and A2 are satis�ed. Then, for each ϕ ∈ Hm(Ω), there
exist ϕI ∈ Wh

k and CI > 0, independent of h, such that

∥ϕ− ϕI∥t,Ω ≤ CIh
m−t|ϕ|m,Ω, t = 0, 1, 2, 2 ≤ m ≤ k + 1, k ≥ 2.

By using Propositions 4.4.1 and 4.4.2, we will establish bounds involving the forms F(·),
B(·; ·, ·) and Bh(·; ·, ·). We start with the following bound for a dual norm. In what follows, we
will assume that the assumptions A1 and A2 of Section 4.3 are satis�ed.

Proposition 4.4.4. Let k ≥ 2 and f ∈ Hk−2(Ωh), F(·) and Fh(·) the functionals de�ned in
(4.2.4) and (4.3.6), respectively. Then, we have the following estimation:

∥F − Fh∥ := sup
ϕh∈Wh

k
ϕh ̸=0

|F(ϕh)−Fh(ϕh)|
∥ϕh∥W

≤ Chk−1|f |k−2,h.

In order to obtain optimal a priori error estimate for our scheme, under minimal regularity
condition on the weak solution, we start with the following result, which is a consequence of [26,
Theorem 7.4].

Proposition 4.4.5. Let Ω be a bounded domain in Rn with Lipschitz continuous boundary. For

i = 1, 2, assume si, s are real numbers satisfying: si ≥ s ≥ 0 and s1+s2−s >
n

2
. If u ∈ Hs1(Ω)

and v ∈ Hs2(Ω), then uv ∈ Hs(Ω). Moreover, the pointwise multiplication of functions is a
continuous bilinear map Hs1(Ω)× Hs2(Ω) → Hs(Ω), i.e., ∥uv∥s,Ω ≤ Cn,Ω∥u∥s1,Ω∥v∥s2,Ω.

Proof. The result follows from [26, Theorem 7.4], taking the particular case when pi = p =
2.



72 Chapter 4. C1-VEMs for the Navier Stokes problem in stream function formulation

Next lemma is the main result of this subsection, which improve the error bound presented
in [3, Lemma 5.4]. Notice that in this case we can consider t > 0.

Lemma 4.4.2. Let φ ∈ H2+t(Ω) ∩W, with 0 < t ≤ k − 1. Then, for all ϕ ∈ W, there exists
C > 0, independent to h, such that

B = |B(φ;φ, ϕ)− Bh(φ;φ, ϕ)| ≤ Cht(∥φ∥2+t,Ω + ∥φ∥W)∥φ∥2+t,Ω∥ϕ∥W .

Proof. By using the de�nition of the continuous and discrete nonlinear terms B(·; ·, ·) and
Bh(·; ·, ·) (cf. (4.2.3) and (4.3.3), respectively), we have

B =
∑
K∈Ωh

(
(∆φcurl φ, ∇ϕ)0,K − (Πk−2

K ∆φΠk−1
K curl φ, Πk−1

K ∇ϕ)0,K
)
,

=
∑
K∈Ωh

(
(∆φcurl φ, (I −Πk−1

K )∇ϕ)0,K + (∆φ (I −Πk−1
K )curl φ ·Πk−1

K ∇ϕ)0,K

+ ((∆φ− Πk−2
K ∆φ)Πk−1

K curl φ, Πk−1
K ∇ϕ)0,K

)
=: T1 + T2 + T3.

In what follows we will bound each terms in the above identity. For the term T1, we consider
two case. First, we study the case 0 < t ≤ 1. Then, we apply the Cauchy-Schwarz inequality,
and approximation properties of Πk−1

K to obtain

T1 =
∑
K∈Ωh

(
∆φcurl φ, (I −Πk−1

K )∇ϕ
)
0,K

≤ Ch∥∆φcurl φ∥0,Ω|∇ϕ|1,Ω

≤ Ch∥∆φ∥t,Ω∥curl φ∥1+t,Ω∥ϕ∥W ≤ Cht∥φ∥2+t,Ω∥φ∥2+t,Ω∥ϕ∥W ,

where we have applied Proposition 4.4.5, with s1 = t, s2 = 1 + t and s = 0. For the case
1 < t ≤ k− 1, we use the orthogonality property of the projection operator Πk−1

K , the Cauchy-
Schwarz inequality, to get

T1 =
∑
K∈Ωh

(
(I −Πk−1

K )(∆φcurl φ), (I −Πk−1
K )∇ϕh

)
0,K

≤ Cht−1∥∆φcurl φ∥t−1,Ωh∥ϕ∥W ≤ Cht∥φ∥2+t,Ω∥φ∥1+t,Ω∥ϕ∥W ,

where once again we have used the Proposition 4.4.5, but now with s1 = s2 = t and s = t− 1.
The remaining terms are estimated by using the approximation and continuity properties of
the involving operators together Sobolev embeddings, only requiring 0 < t ≤ k − 1 as in [3,
Lemma 5.4].

We �nish this subsection with the following result.

Lemma 4.4.3. For all ζ, φ, ϕ ∈ W we have that

|Bh(φ;φ, ϕ)− Bh(ζ; ζ, ϕ)| ≤ Ĉh (∥ζ∥W∥ϕ∥W + ∥φ− ζ + ϕ∥W(∥φ∥W + ∥ζ∥W)) ∥ϕ∥W .

Proof. The proof follows from adding and subtracting adequate terms, together with properties
in (4.4.5).
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4.4.2.1 A priori estimate

In this section we will provide a new error estimate in H2-norm for our nonlinear discrete
scheme under minimal regularity conditions on the weak stream-function solution. First, we
start establishing a Strang-type lemma. Indeed, given ψ ∈ W the solution of continuous
problem (4.2.1), then we introduce the following consistence error as:

Ch(ψ, ϕh) := B(ψ;ψ, ϕh)− Bh(ψ;ψ, ϕh) ∀ϕh ∈ Wh
k . (4.4.8)

which measure of the variational crime associated to the approximation of the trilinear form
B(·; ·, ·). Next, we present the following abstract convergence result.

Theorem 4.4.2. Let ψ and ψh be the unique solutions to problems (4.2.1) and (4.3.7), respec-
tively. Then, there exists C > 0, independent of h, such that

∥ψ − ψh∥W ≤ C
(

inf
ϕh∈Wh

k

∥ψ − ϕh∥W + inf
φk∈Pk(Ωh)

|ψ − φk|2,h + ∥F − Fh∥+ sup
ϕh∈Wh

k
ϕh ̸=0

|Ch(ψ, ϕh)|
∥ϕh∥W

)
,

where Ch(ψ, ·) is the consistency errors de�ned in (4.4.8).

Proof. Let ϕh ∈ Wh
k and set χh := ψh − ϕh. Thus, ψ − ψh = (ψ − ϕh) + χh. Now, by the

coercivity and consistency properties of bilinear form Ah(·, ·), adding and subtracting adequate
terms we have that

να2∥χh∥2W ≤ νAh(χh, χh) = νAh(ψh, χh)− νAh(ψI , χh)

= νAh(ψh, χh)− νA(ψ, χh) + ν
∑
K∈Ωh

(
Ah
K(φk − ϕh, χh) +Ah

K(ψ − φk, χh)
)

=
(
Fh(χh)−F(χh)

)
+
(
B(ψ;ψ, χh)− Bh(ψh;ψh, χh)

)
+ ν

∑
K∈Ωh

(
Ah
K(φk − ϕh, χh) +Ah

K(ψ − φk, χh)
)
,

where φk ∈ Pk(K) is arbitrary. Now, we employ the continuity of bilinear forms AK(·, ·),
Ah
K(·, ·), and the triangular inequality, to obtain∑

K∈Ωh

(
Ah
K(φk − ϕh, χh) +Ah

K(ψ − φk, χh)
)
≤ C(∥ϕh − ψ∥W + |ψ − φk|2,h)∥χh∥W .

On the another hand, by adding and subtracting the term Bh(ψ;ψ, χh) and applying
Lemma 4.4.3, we obtain

|Bh(ψh;ψh, χh)− B(ψ;ψ, χh)| ≤ |Bh(ψh;ψh, χh)− Bh(ψ;ψ, χh)|+ |Bh(ψ;ψ, χh)− B(ψ;ψ, χh)|
≤ Ĉh (∥ψh∥W∥χh∥W + ∥ψ − ϕh∥W(∥ψ∥W + ∥ψh∥W)) ∥χh∥W + |Ch(ψ, χh)|.

By combining the three previous estimates we have that

να2∥χh∥W ≤ C(∥ψ − ϕh∥W + |ψ − φk|2,h) + Ĉh∥ψh∥W∥χh∥W + ∥F − Fh∥+ |Ch(ψ, χh)|
∥χh∥W

.

Thus, by using (4.4.7) and (4.4.6) we obtain (1− Ĉh(να2)
−1∥ψh∥W) ≥ 1− λh > 0.
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Therefore, from above inequality, we obtain

∥χh∥W ≤ C
(
∥ψ − ϕh∥W + |ψ − φk|2,h + ∥F − Fh∥+ |Ch(ψ, χh)|

∥χh∥W

)
.

Finally, the desired result follows from and triangle inequality the above bound.

The following theorem is the main result of this section and it provides the accuracy of our
VE schemes in H2-norm under minimal regularity of the weak solution.

Theorem 4.4.3. Under assumptions (4.2.5) and (4.4.6), let ψ and ψh be the unique solutions
of problems (4.2.1) and (4.3.7), respectively. Assuming that f ∈ Hk−2(Ωh) and ψ ∈ H2+s(Ω),
with s > 0, then there exists Cconv > 0 such that

∥ψ − ψh∥W ≤ Cconv h
min{s,k−1} (∥ψ∥2+s,Ω + |f |k−2,h) ,

where Cconv := C(f ; ν, λ, λh) is a suitable constant independent of h.

Proof. The proof follows by combining Theorem 4.4.2, Propositions 4.4.1, 4.4.3, 4.4.4, and
Lemma 4.4.2.

4.4.2.2 Error estimates in H1 and L2

In this subsection we will lead the main ingredients to derive optimal error estimates in H1-
and L2-norms for the stream-function. First, we consider the following dual problem: given
ψ ∈ W (the unique solution of problem (4.2.1)), seek ϕ ∈ W , such that

νA(φ, ϕ) + B(ψ;φ, ϕ) + B(φ;ψ, ϕ) = L(φ) ∀φ ∈ W , (4.4.9)

where A(·, ·) and B(·; ·, ·) are the forms de�ned in (4.2.2) and (4.2.3), respectively and L ∈
H−i(Ω), with i = 1, 2 is a functional, which will be speci�ed later. Following the same arguments
presented in [111] we have that problem (4.4.9) is well-posed.

In order to develop the error estimates in H1- and L2-norms, from now on, we make the
following assumption for the solution of problem (4.2.1):

Assumption 4.4.1. There exists s > 1/2 such that ψ ∈ H2+s(Ω). Moreover, for the particular
case 1/2 < s ≤ 1, there exists Creg > 0, independent of h, satisfying ∥ψ∥2+s,Ω ≤ Creg∥f∥0,Ω.

We have the following previous result involving the trilinear forms B(·; ·, ·) and Bh(·; ·, ·)
de�ned in (4.2.3) and (4.3.5), respectively.

Lemma 4.4.4. Let ψ ∈ W ∩H2+s(Ω) and ψh ∈ Wh
k be the unique solutions of problems (4.2.1)

and (4.3.7), respectively. Assuming that f ∈ Hk−2(Ωh) and let φ ∈ H2+t(Ω), with t ∈ (1/2, 1].
Then, it holds

I := Bh(ψh;ψh, φ)− B(ψh;ψh, φ) ≤ 2ĈhCreg∥f∥0,Ω|ψ − ψh|1,Ω∥φ∥2+t,Ω
+ C(ht+min{s, k−1} + h2min{s, k−1}) (|f |k−2,h + ∥ψ∥2+s,Ω) ∥φ∥2+t,Ω,

where C > 0 is a constant independent of h, Ĉh and Creg are the constants in (4.4.5), respec-
tively and Assumption 4.4.1.
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Proof. By using the de�nition of trilinear forms B(·; ·, ·) and Bh(·; ·, ·), adding and subtracting
suitable terms we have the following identity

I =
∑
K∈Ωh

(
(I − Πk−2

K )∆ψh)(curl ψh − curl ψ), ∇φ
)
0,K

+
(
Πk−2
K (∆(ψh − ψ))(I −Πk−1

K )curl ψh, ∇φ
)
0,K

+
(
Πk−2
K (∆(ψh − ψ))Πk−1

K curl ψh, (I −Πk−1
K )∇φ

)
0,K

+
(
Πk−2
K ∆ψΠk−1

K (curl (ψh − ψ)), (I −Πk−1
K )∇φ

)
K

+
(
Πk−2
K ∆ψ((I −Πk−1

K )curl ψh)∇φ
)
0,K

+
(
(I − Πk−2

K )∆ψh)curl ψ, ∇φ
)
0,K

+
(
Πk−2
K ∆ψΠk−1

K curl ψ, (I −Πk−1
K )∇φ

)
0,K

=: I1 + I2 + I3 + I4 + I5 + I6 + I7.

In what follows, we will bound each terms of the above expression. Indeed, for the term I1
we use the Hölder and triangle inequalities, along with approximations properties of Πk−2

K , to
obtain

I1 ≤
∑
K∈Ωh

(2∥∆ψh −∆ψ∥0,K + ∥∆ψ − Πk−2
K ∆ψ∥0,K)∥curl (ψh − ψ)∥L4(K)∥∇φ∥L4(K)

≤ C(∥ψ − ψh∥W + hmin{s,k−1}∥ψ∥2+s,Ω)∥curl (ψ − ψh)∥L4(Ω)∥∇φ∥L4(Ω)

≤ Ch2min{s,k−1}(|f |k−2,h + ∥ψ∥2+s,Ω)∥φ∥2+t,Ω,

where we have used the Hölder inequality (for sequences), the Sobolev inclusion (4.4.3) and
Theorem 4.4.3. Following similar arguments (with some slight variations) we estimate the
remaining terms. In particular, we prove

I2 + I3 + I4 + I6 + I7 ≤ C(ht+min{s, k−1} + h2min{s, k−1}) (|f |k−2,h + ∥ψ∥2+s,Ω) ∥φ∥2+t,Ω.

Moreover, by using the Sobolev inclusion Hs(Ω) ↪→ L4(Ω), with s ∈ (1/2, 1], we get

I5 ≤ 2CregĈh∥f∥0,Ω|ψ − ψh|1,Ω∥φ∥2+t,Ω + Cht+min{s,k−1}∥ψ∥2+s,Ω∥φ∥2+t,Ω.

By combining the above estimates we obtain the desired result.

In what follows, we will consider the following additional small data assumption:

Assumption 4.4.2. Let Ĉh and Creg are the constants in (4.4.5) and Assumption 4.4.1, re-

spectively. We assume that 2C2
regĈh∥f∥0,Ω < 1.

The following result provides error estimates in H1 and L2-norms of our numerical schemes.

Theorem 4.4.4. Let k ≥ 2 and f ∈ Hk−2(Ωh). Under assumptions (4.2.5) and (4.4.6), let
ψ and ψh be the unique solutions to the continuous and discrete problems (4.2.1) and (4.3.7),
respectively. Moreover if Assumption 4.4.2 is satis�ed, then there exists s̃ ∈ (1/2, 1], such that

|ψ − ψh|1,Ω ≤ C(hs̃+min{s, k−1} + h2min{s, k−1}) (|f |k−2,h + ∥ψ∥2+s,Ω) .

Moreover, we have the following estimates:
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a) if k = 2, f ∈ L2(Ω) and (4.4.2) is satis�ed, then there exists s̃ ∈ (1/2, 1], such

∥ψ − ψh∥0,Ω ≤ C(hs̃+min{s,1} + h2min{s,1})(∥f∥0,Ω + ∥ψ∥2+s,Ω),

b) if k ≥ 3 and f ∈ Hk−2(Ωh), then there exists γ ∈ (1/2, 2], such that

∥ψ − ψh∥0,Ω ≤ C(hγ+min{s, k−1} + h2min{s, k−1})(|f |k−2,h + ∥ψ∥2+s,Ω).

In all the above cases C is a positive constant independent of h.

Proof. Let ϕ ∈ W be the solution of (4.4.9), with L : H1
0(Ω) → R de�ned by:

L(φ) := (∇(ψ − ψh),∇φ)0,Ω.

Then, using the additional regularity of problem (4.4.9) (see [111, Section 2]), there exists
s̃ ∈ (1/2, 1] such that ϕ ∈ W ∩ H2+s̃(Ω) and

∥ϕ∥2+s̃,Ω ≤ Creg|ψ − ψh|1,Ω. (4.4.10)

Now, let ϕI ∈ Wh
2 be such that Proposition 4.4.3 holds true. Then, we have

∥ϕ− ϕI∥W ≤ CIh
s̃∥ϕ∥2+s̃,Ω ≤ CICregh

s̃|ψ − ψh|1,Ω. (4.4.11)

Taking φ := (ψ − ψh) ∈ W as test function in (4.4.9), and adding an subtracting several
adequate terms, we have the following identity

|ψ − ψh|21,Ω = νA(ψ − ψh, ϕ− ϕI) + ν[Ah(ψh, ϕI)−A(ψh, ϕI)] + [F(ϕI)−Fh(ϕI)]

+ [Bh(ψh;ψh, ϕI − ϕ)− B(ψ;ψ, ϕI − ϕ)] + B(ψ − ψh;ψ − ψh, ϕ)

+ [Bh(ψh;ψh, ϕ)− B(ψh;ψh, ϕ)] =: TA1 + TA2 + TF + TB1 + TB2 + TB3.

(4.4.12)

By using standard arguments we obtain

TA1 + TA2 + TF ≤ Chs̃+min{s,k−1} (|f |k−2,h + ∥ψ∥2+s,Ω) |ψ − ψh|1,Ω.

Moreover, the term TB1 is bounded by using the Lemmas 4.4.2 and 4.4.3, as follows:

|TB1| ≤ Chmin{s, k−1}(∥ψ∥2+s,Ω + ∥ψ∥W)∥ψ∥2+s,Ω∥ϕI − ϕ∥W
+ Ĉh∥ψ − ψh∥W∥ϕ− ϕI∥W(∥ψ∥W + ∥ψh∥W) + Ĉh∥ϕ− ϕI∥2W(2∥ψh∥W + ∥ψ∥W).

Now, using the above estimate, (4.4.11) and Theorem 4.4.3, we have that

|TB1| ≤ Chs̃+min{s, k−1}(∥ψ∥2+s,Ω + ∥ψ∥W)∥ψ∥2+s,Ω|ψ − ψh|1,Ω
+ Chs̃+min{s, k−1}(∥ψ∥2+s,Ω + |f |k−2,h)(∥ψ∥W + ∥ψh∥W)|ψ − ψh|1,Ω
+ Ch2s̃+min{s, k−1}(∥ψh∥W + ∥ψ∥W)|ψ − ψh|1,Ω,

where we have used in the second term the estimate:

∥ϕ− ϕI∥2W ≤ C2
IC

2
regh

2s̃|ψ − ψh|21,Ω ≤ Ch2s̃∥ψ − ψh∥W |ψ − ψh|1,Ω.
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Next, we will continue with the remaining terms of (4.4.12). For the term TB2 we use the
continuity of trilinear form B(·; ·, ·), Theorem 4.4.3 and (4.4.10) to obtain

TB2 ≤ Ch2min{s, k−1}(∥ψ∥2+s,Ω + |f |k−2,h)|ψ − ψh|1,Ω. (4.4.13)

For the term TB3 we use Lemma 4.4.4 and (4.4.10) to obtain

TB3 ≤ C(hs̃+min{s, k−1} + h2min{s, k−1}) (|f |k−2,h + ∥ψ∥2+s,Ω) |ψ − ψh|1,Ω
+ 2C2

regĈh∥f∥0,Ω|ψ − ψh|21,Ω.
(4.4.14)

Finally, the desired result is easily obtained by combining the estimates (4.4.12)�(4.4.14)

and the fact that (1− 2C2
regĈh∥f∥0,Ω) > 0 (cf. Assumption 4.4.2).

We continue with the L2 estimates. Indeed, the bound a), follows from norms equivalence.
To prove b), we consider the functional L(φ) := (ψ − ψh, φ)0,Ω ∀φ ∈ W , then by repeating
similar arguments above we obtain the result.

4.5 Computing further variables of interest

In this section, by using the discrete stream-function obtained by solving the problem (4.3.7),
we propose strategies to approximate further variables that are of great importance in �uid
mechanics, namely; the velocity (u), pressure (p) and vorticity (ω). Moreover, we write a
priori error estimates for these variables.

4.5.1 The �uid velocity and vorticity recovery algorithm

We start by noticing that if ψ ∈ W is the unique solution of the continuous problem (4.2.1),
then the velocity and vorticity �elds of Navier�Stokes system (4.2.6) is given by:

u = curl ψ and ω = rotu = rot(curl ψ) = −∆ψ. (4.5.1)

At the discrete level, employing the projector Πk−1
K and Πk−2

K , we propose a fully computable
approximation of the velocity and vorticity variables, given by:

ûh := Πk−1
h curl ψh and ω̂h := −Πk−2

h (∆ψh), (4.5.2)

where for all v ∈ L2(Ω) and for all φ ∈ L2(Ω) we have used the notation

(Πk−1
h v)|K = Πk−1

K (v|K) and (Πk−2
h φ)|K = Πk−2

K (φ|K) ∀K ∈ Ωh.

The following result establishes the accuracy for the velocity and vorticity �elds.

Theorem 4.5.1. Assume that the hypotheses of Theorem 4.4.3 hold true, then

|u− ûh|1,h + ∥ω − ω̂h∥0,Ω ≤ C̃1h
min{s,k−1}(∥ψ∥2+s,Ω + |f |k−2,h)

∥u− ûh∥0,Ω ≤ C̃2

(
hs̃+min{s, k−1} + h2min{s, k−1}) (∥ψ∥2+s,Ω + |f |k−2,h) ,

where C̃1 and C̃2 are suitable constants independent of h.

Proof. The proof follows from identities (4.5.1) and (4.5.2), the triangle inequality and ap-
proximation and stability properties of the involved operators, together with Theorems 4.4.3
and 4.4.4.
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4.5.2 The �uid pressure recovery algorithm

In this subsection, we present a strategy to recover the �uid pressure of the Navier�Stokes
system (4.2.6). We extend the ideas recently presented in [133]. In this work we propose a
discrete virtual scheme of high-order ℓ := k − 2 (with k ≥ 3), based on the enhanced C0-VEM
presented in [65] (see also [7]). From now, we assume that Ω is convex.

4.5.2.1 Continuous variational formulation

We start by introducing the following Hilbert space H := {q ∈ H1(Ω) : (q, 1)0,Ω = 0}. Now,
by using the identities ∆u = −curl(rotu)+∇(divu) and rot(curlψ) = −∆ψ in the momentum
equation of the Navier�Stokes problem (cf. (4.2.6) in Remark 4.2.1), we obtain

∇p = f−(u ·∇)u+ν(−curl(rotu)+∇(divu)) = f−(curlψ ·∇)curlψ+ν curl(∆ψ), (4.5.3)

where we have employed also the identities u = curlψ and divu = 0 in Ω (cf. system (4.2.6)).
Now, we proceed to test the equation (4.5.3) against ∇q, with q ∈ H, then we get the

following variational problem: seek p ∈ H, such that

D(p, q) = Gψ(q) ∀q ∈ H, (4.5.4)

where the form D : H×H → R is de�ned by

D(p, q) := (∇p,∇q)0,Ω ∀p, q ∈ H,

and Gψ : H → R is the functional de�ned by

Gψ(q) := ((f − (curl ψ ·∇)curl ψ + ν curl (∆ψ)),∇q)0,Ω ∀q ∈ H.

The following result establishes that problem (4.5.4) is well-posed. The proof follows from
the generalized Poincaré inequality and the Lax-Milgram Theorem.

Theorem 4.5.2. Problem (4.5.4) have a unique solution p ∈ H. Moreover, there exists C > 0
such that

∥p∥1,Ω ≤ C(∥ψ∥3,Ω + ∥f∥0,Ω) ≤ C∥f∥0,Ω.

4.5.2.2 C0-VE approximation

From now on, we assume the C1-VEM (4.3.7) has been solved with k ≥ 3. Thus, we will
introduce a C0-VEM of high-order ℓ := k− 2 ≥ 1, to discretize problem (4.5.4) (over the same
mesh Ωh).

First, we de�ne the projector Π∇,ℓ
K : H1(K) → Pℓ(K) for each qh ∈ H1(K) as the solution of

the local problems:

DE(qh − Π∇,ℓ
K qh, rℓ) = 0 ∀rℓ ∈ Pℓ(K), and P0(Π

∇,ℓ
K qh − qh) = 0,

where the operator P0(·) is de�ned in (4.3.1). By employing this projection we introduce our
local virtual space to approximate the �uid pressure:

Hh
ℓ (K) :=

{
qh ∈ H1(K) ∩ C0(∂K) : ∆qh ∈ Pℓ(K), qh|e ∈ Pℓ(e) ∀e ⊂ ∂K

(r∗, qh − Π∇,ℓ
K qh)0,K = 0 ∀r∗ ∈ M∗

ℓ(K) ∪M∗
ℓ−1(K)

}
.

For each qh ∈ H̃h
ℓ (K) we consider the following set of linear operators:
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P1 : the values of qh(vi) for all vertex vi of the polygon K;

P2 : for ℓ ≥ 2, the moments: h−1
e (qh, r)0,e ∀r ∈ Mℓ−2(e), ∀ edge e;

P3 : for ℓ ≥ 2, the moments: h−2
K (qh, r)0,K ∀r ∈ Mℓ−2(E) ∀ polygon E.

We have that the sets of linear operator P1 − P3 constitutes a set of degrees of freedom for
Hh
ℓ (K). Moreover, the operator Π∇,ℓ

K : Hh
ℓ (K) → Pℓ(K) ⊆ Hh

ℓ (K) is computable using only the
information of the set of degrees of freedom P1−P3 (for further details, see for instance [7, 65]).

The global virtual space to approximate the �uid pressure of system (4.2.6), for each de-
composition Ωh of Ω is given by

Hh
ℓ :=

{
qh ∈ H : qh|K ∈ Hh

ℓ (K) ∀K ∈ Ωh

}
.

In order to approximate the D(·, ·), we set

Dh
K(ph, qh) := (Πℓ−1

K ∇ph,Πℓ−1
K ∇qh)0,K + S∇

E

(
(I− Π∇,ℓ

K )ph, (I− Π∇,ℓ
K )qh

)
,

where S∇
E (·, ·) given by the classical Euclidean scalar product associated to the degrees of free-

dom P1 −P3 (see [27, 65]), which satis�es the stability properties. Using the above de�nition,
we introduce the discrete problem for the pressure variable: seek ph ∈ Hh

ℓ such that

Dh(ph, qh) =
∑
K∈Ωh

Dh
K(ph, qh) = Gψh(qh) ∀qh ∈ Hh

ℓ , (4.5.5)

where the discrete linear functional is given by

Gψh(qh) =
∑
K∈Ωh

GψhK (qh) :=
∑
K∈Ωh

(
f − (Πk−1

K curl ψh ·∇)Πk−1
K curl ψh

+ νcurl (Πk−2
K ∆ψh),Π

ℓ−1
K ∇qh

)
0,K
.

(4.5.6)

We have that the bilinear form Dh(·, ·) is bounded and using the generalized Poincaré inequality
we prove that Dh(·, ·) is uniformly elliptic.

4.5.2.3 Theoretical analysis

Now, we develop the corresponding theoretical analysis for the VE scheme presented in
Section 4.5.2.2. In particular, we establish that problem (4.5.5) is well-posed and we provide a
priori error estimate for this scheme.

We start recalling the inverse inequalities for polynomials on polygons (see [35]).

Lemma 4.5.1. There exist ĉ1, ĉ2 > 0, independent of h, such that for all q ∈ Pm(K), with
m ≥ 0 it holds

|q|1,K ≤ ĉ1h
−1
K ∥q∥0,K , and ∥q∥L4(K) ≤ ĉ2h

−1/2
K ∥q∥0,K . (4.5.7)

Thus, from the �rst inverse inequality in (4.5.7) and approximation property of projector
Πk−1
K , we obtain the following stability property:

|Πk−1
K curl ϕ|1,K ≤ C̃bd|ϕ|2,K ∀K ∈ Ωh, ∀ϕ ∈ H2(K). (4.5.8)

Henceforth, we will assume quasi-uniformity for the family of meshes Ωh.
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A3: For each h > 0 and for each K ∈ Ωh, there exists an uniform constant ĉ > 0, independent
of h, such that hK ≥ ĉ h.

Proposition 4.5.1. If the assumptions A1−A3 are satis�ed, ψ ∈ H3(Ω)∩W and f ∈ H1(Ωh),
then the lineal functional Gψh : Hh

ℓ → R de�ned in (4.5.6) is bounded.

Proof. Let qh ∈ Hh
ℓ . Then, by using triangle inequality we get

|Gψh(qh)| ≤ C∥f∥0,Ω∥qh∥1,Ω +
∑
K∈Ωh

|((Πk−1
K curl ψh ·∇)Πk−1

K curl ψh,Π
ℓ−1
K ∇qh)0,K |

+ ν|(curl (Πk−2
K ∆ψh),Π

ℓ−1
K ∇qh)0,K | =: C∥f∥0,Ω∥qh∥1,Ω + G2 + G3.

(4.5.9)

For the term G2, we add and subtract (curlψ ·∇)curlψ ·Πℓ−1
K ∇qh, then by employing triangle

inequality and the stability of the projections Πk−2
K and Πℓ−1

K (cf. (4.4.1) and (4.4.2)), we obtain

G2 ≤
∑
K∈Ωh

∣∣((curl ψ ·∇)curl ψ − (Πk−1
K curl ψh ·∇)Πk−1

K curl ψh,Π
ℓ−1
K ∇qh

)
0,K

∣∣
+
∑
K∈Ωh

∣∣((curl ψ ·∇)curl ψ,Πℓ−1
K ∇qh)0,K

∣∣ =: G2a + G2b.
(4.5.10)

From the Cauchy-Schwarz inequality, we have that G2b ≤ C∥ψ∥W∥ψ∥3,Ω∥qh∥1,Ω. For the term
G2a, we add and subtract (Πk−1

K curl ψh ·∇)curl ψ ·Πℓ−1
K ∇qh and we apply triangle inequality

to obtain

G2a ≤
∑
K∈Ωh

∥curl ψ −Πk−1
K curl ψh∥0,K∥∇curl ψ∥L4(K)∥Πℓ−1

K ∇qh∥L4(K)

+
∑
K∈Ωh

∥Πk−1
K curl ψh∥L4(K)∥∇(curl ψ −Πk−1

K curl ψh)∥0,K∥Πℓ−1
K ∇qh∥L4(K)

≤ C
∑
K∈Ωh

∥curl ψ −Πk−1
K curl ψh∥0,K∥curl ψ∥W1

4(K)h
−1/2
K ∥∇qh∥0,K

+ C
∑
K∈Ωh

∥Πk−1
K curl ψh∥L4(K)|curl ψ −Πk−1

K curl ψh|1,Kh−1/2
K ∥∇qh∥0,K

=: T1 + T2,

(4.5.11)

where we have used the second inverse inequality in (4.5.7) and stability of projector Πℓ−1
K .

Now, we will estimate the terms T1 and T2. For term T1, �rst we add and subtract Πk−1
K curlψ,

then applying approximation and stability properties of the projectorΠk−1
K , along with Theorem

4.4.3, we obtain

T1 ≤ C
∑
K∈Ωh

(∥(I −Πk−1
K )curl ψ∥K + ∥Πk−1

K curl (ψ − ψh)∥K) ∥curl ψ∥W1
4(K) h

−1/2
K ∥∇qh∥K

≤ C
∑
K∈Ωh

(∥ψ∥2,K + (∥ψ∥3,Ω + |f |1,h)) ∥curl ψ∥W1
4(K) h

1/2
K ∥∇qh∥0,K

≤ C (∥ψ∥2,Ω + (∥ψ∥3,Ω + |f |1,h))
∑
K∈Ωh

∥curl ψ∥W1
4(K) ∥1∥L4(E) ∥∇qh∥0,K

≤ C (∥ψ∥3,Ω + |f |1,h) ∥1∥L4(Ω)∥ψ∥3,Ω∥qh∥1,Ω,
(4.5.12)
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where we have also used assumption A3, the relation h
1/2
K ≤ C∥1∥L4(E), the Hölder inequality

(for sequences) and Sobolev embedding H2(Ω) ↪→ W1
4(Ω).

For the term T2, we use the same arguments as in (4.5.12), stability property (4.4.2) and
Theorem 4.4.3, to get

T2 ≤ C (∥ψ∥3,Ω + |f |1,h) ∥1∥L4(Ω)∥ψh∥W∥qh∥1,Ω. (4.5.13)

Next, inserting the estimates (4.5.12), (4.5.13) in (4.5.11), we obtain

G2 ≤ G2a + G2b ≤ C (∥ψ∥3,Ω + |f |1,h) ∥qh∥1,Ω. (4.5.14)

To estimate the term G3 (cf. (4.5.9)), we observe that curl (Π
k−2
K ∆ψh) ∈ Pk−3(K), then using

the �rst inverse inequality in (4.5.7) and repeating the arguments used in [133, Proposition 4.20],
we get

G3 ≤ C (∥ψ∥3,Ω + |f |1,h) ∥qh∥1,Ω, (4.5.15)

where the constant C > 0 depends on the constant ĉ in assumption A3. Finally, from (4.5.9),
(4.5.14) and (4.5.15) we obtain the desired result.

As a consequence of Proposition 4.5.1 and the Lax-Milgram Theorem, we have that problem
(4.5.5) is well-posed. More precisely, we have the following result.

Theorem 4.5.3. Under the same assumptions of Proposition 4.5.1, problem (4.5.5) admits a
unique solution ph ∈ Hh

ℓ and there exists C > 0, independent to h, such that

∥ph∥1,Ω ≤ C(∥ψ∥3,Ω + |f |1,h).

In what follows, we will establish the order of convergence of the VE scheme (4.5.5). We
begin with the following Strang-type lemma, which proof is obtained from standard arguments
in the VEM literature (see for instance [27, 65]).

Proposition 4.5.2. Suppose that the assumptions of Proposition 4.5.1, are satis�ed. Let p
and ph be the unique solutions of problems (4.5.4) and (4.5.5), respectively. Then, there exists
C > 0, independent of h, such that

∥p− ph∥1,Ω ≤ C
(

inf
qh∈Hhℓ

∥p− qh∥1,Ω + inf
wℓ∈Pℓ(Ωh)

|p− wℓ|1,h + ∥Gψ − Gψh∥
)
.

Next, in order to conclude the error estimate, we will bound the term ∥Gψ − Gψh∥. With
this end, we will require that ψ ∈ Hk+1(Ω), with k ≥ 3.

Proposition 4.5.3. Let k ≥ 3 and f ∈ Hk−2(Ωh). Suppose that Assumptions A1 − A3 are
satis�ed and ψ ∈ Hk+1(Ω), then we have the following estimate:

∥Gψ − Gψh∥ ≤ Ĉhℓ (∥ψ∥k+1,Ω + |f |k−2,h) .

Proof. Let qh ∈ Hh
ℓ , then using the de�nition of the functionals Gψ(·) and Gψh(·) together with

the triangle inequality and properties of Πℓ−1
K , we have that

|Gψ(qh)− Gψh(qh)| ≤
∑
K∈Ωh

∣∣(f −Πℓ−1
K f ,∇qh −Πℓ−1

K ∇qh)0,K
∣∣

+
∣∣(curl ψ ·∇)curl ψ · ∇qh − (Πk−1

K curl ψh ·∇)Πk−1
K curl ψh,Π

ℓ−1
K ∇qh)0,K

∣∣
+ ν
∣∣(curl (∆ψ) · ∇qh − curl (Πk−2

K ∆ψ),Πℓ−1
K ∇qh

)
0,K

∣∣
≤ Chℓ|f |ℓ,h ∥qh∥1,Ω + T1 + T2.

(4.5.16)
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To estimate T1, we add and subtract suitable terms and employing the triangle inequality, we
have that

T1 =
∑
K∈Ωh

∣∣((curl ψ ·∇)curl ψ, (I −Πℓ−1
K )∇qh)0,K

∣∣
+
∣∣(curl ψ ·∇)(curl ψ −Πk−1

K curl ψh),Π
ℓ−1
K ∇qh)0,K

∣∣
+
∣∣(((curl ψ −Πk−1

K curl ψh) ·∇)Πk−1
K curl ψ,Πℓ−1

K ∇qh
)
0,K

∣∣ =: T1a + T1b + T1c.

(4.5.17)

In that follows, we will establish bounds for the three terms above. We start with T1a.
By orthogonality and approximation properties of the projection Πℓ−1

K and Cauchy-Schwarz
inequality, we obtain

T1a ≤
∑
K∈Ωh

∥(I −Πℓ−1
K )((curl ψ ·∇)curl ψ)∥0,K∥(I −Πℓ−1

K )∇qh∥0,K

≤ Chℓ|(curl ψ ·∇)curl ψ|ℓ,Ω∥qh∥1,Ω ≤ Chℓ∥ψ∥k+1,Ω∥ψ∥k,Ω∥qh∥1,Ω,
(4.5.18)

where we have used Hölder inequality and the Sobolev inclusion Hℓ+1(Ω) ↪→ Wℓ
4(Ω). In order

to bound the term T1b, we use approximation property of the operator Πk−1
K (cf. (4.4.2)), the

second inverse inequality in (4.5.7) and stability property of Πℓ−1
K , as follows:

T1b ≤
∑
K∈Ωh

∥curl ψ∥L4(K)|curl ψ −Πk−1
K curl ψh|1,K∥Πℓ−1

K ∇qh∥L4(K)

≤ C
∑
K∈Ωh

∥curl ψ∥L4(K)h
k−1(∥ψ∥k+1,Ω + |f |k−2,h)h

−1/2
K ∥Πℓ−1

K ∇qh∥0,K ,

where in the last inequality, we have used stability property (4.5.8) and Theorem 4.4.3. Next,
from the above inequality, using Hölder inequality, Sobolev inclusion and Assumption A3, we
get

T1b ≤ Chℓ (∥ψ∥k+1,Ω + |f |k−2,h)
∑
K∈Ωh

∥curl ψ∥L4(K)∥1∥L4(K)∥∇qh∥0,K

≤ Chℓ (∥ψ∥k+1,Ω + |f |k−2,h) ∥ψ∥3,Ω∥1∥L4(Ω)∥qh∥1,Ω.
(4.5.19)

Then, using similar arguments, we have the following bound fo the term T1c:

T1c ≤
∑
K∈Ωh

∥curl ψ −Πk−1
K curl ψh∥0,K∥∇Πk−1

K curl ψ∥L4(K)∥Πℓ−1
K ∇qh∥L4(K)

≤ Chℓ (∥ψ∥k+1,Ω + |f |k−2,h) ∥1∥L4(Ω)∥ψ∥3,Ω∥qh∥1,Ω.
(4.5.20)

Next, inserting (4.5.18), (4.5.19) and (4.5.20) in (4.5.17), we have

T1 ≤ Chℓ (∥ψ∥k+1,Ω + |f |k−2,h) ∥qh∥1,Ω. (4.5.21)

Now, repeating the arguments used in [133, Proposition 4.22], we obtain the same bound
as in (4.5.21) for the term T2. Finally, by combining the above fact, the estimates (4.5.16) and
(4.5.21) we deduce the desired result.

The following theorem provides the rate of convergence of our virtual scheme (4.5.5) in
terms of k ≥ 3, where k is the degree accuracy of the VE scheme (4.3.7).
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Theorem 4.5.4. Assume p ∈ Hk−1(Ω) ∩ H, then there exists C > 0, independent of h, such
that

∥p− ph∥1,Ω ≤ Chk−2 (∥ψ∥k+1,Ω + ∥p∥k−1,Ω + |f |k−2,h) .

Proof. The proof follows by combining Propositions 4.5.2, 4.5.3, approximation properties in
the polynomial and virtual element space Hh

ℓ (see [65, 134]).

4.6 Extension to the boundary conditions on the pressure

case

In this section we present a brief extension to the Navier�Stokes system with boundary
conditions on the pressure formulated in terms of the stream-function.

Now, we assume that the boundary Γ admits a partition without overlap into two parts, as
follows: Γ = Γ1 ∪ Γ2, Γ1 ∩ Γ2 = ∅. Moreover, we assume that |Γ1| > 0 in Γ and that each
connected component of Γ2 is �at. Next, we consider the Navier�Stokes problem (4.2.6), with
the following boundary conditions (for further details, see [45, 48]):

u = 0 on Γ1, u · t = 0 and p+
1

2
|u|2 = p0 on Γ2. (4.6.1)

Let us consider the space

X =
{
v ∈ H1(Ω) : v · n = 0 on Γ1 and v · t = 0 on Γ

}
.

We have that a variational formulation in terms of the primitive variables of problem (4.2.6)

with boundary conditions (4.6.1), read as: given f ∈ L2(Ω) and p0 ∈ H
1
2
00(Γ2), �nd (u, p) ∈

X× L2(Ω) such that

ν(rotu, rotv)0,Ω + (rotu× u,v)0,Ω − (p+ |u|2/2, div v)0,Ω = (f ,v)0,Ω − (p0, (v · n))0,Γ2

−(q, div u)0,Ω = 0,

(4.6.2)

for all (v, q) ∈ X × L2(Ω). The goal now is to obtain a formulation in terms of the stream-
function, let us de�ne the space V = {v ∈ X : div v = 0 in Ω}, and we note that given
v ∈ V, there exists (the stream-function) ϕ ∈ H2(Ω)/R, such that v = curl ϕ ∈ H1

Γ1
(Ω).

Motivated by the above facts, we consider the Hilbert space for the stream-function: Ŵ :=
{ϕ ∈ W : ϕ = 0 on Γ1 and ∂nϕ = 0 on Γ} . Thus, by introducing the stream-function
of the velocity �eld (i.e., u = curl ψ) and using some identities, we have

rot(curl ϕ) = −∆ϕ and (rotu× u) · v = (∆ψ curl ψ) · ∇ϕ. (4.6.3)

Therefore, by combining (4.6.2) and (4.6.3), we obtain the following stream-function form:

given f ∈ L2(Ω) and p0 ∈ H
1
2
00(Γ2), seek ψ ∈ Ŵ

νÂ(ψ, ϕ) + B(ψ;ψ, ϕ) = F(ϕ)− G(ϕ) ∀ϕ ∈ Ŵ , (4.6.4)
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with B : Ŵ×Ŵ×Ŵ → R and F : Ŵ → R are de�ned as before and the forms Â : Ŵ×Ŵ → R,
and G : Ŵ → R, are given by:

Â(φ, ϕ) := (∆φ,∆ϕ)0,Ω, and G(ϕ) := (p0, curl ϕ · n)0,Γ2 ∀φ, ϕ ∈ Ŵ .

From the generalized Poincaré inequality we have that ∥φ∥Ŵ := Â(φ, φ)1/2 is a norm in Ŵ .

Thus, we will endow the space Ŵ with this norm.
To discretize the new forms de�ned above, we set

Âh(φh, ϕh) :=
∑
K∈Ωh

(∆Πk,D
K φh,∆Πk,D

K ϕh)0,K + SK
(
(I− Πk,D

K )φh, (I− Πk,D
K ϕh),

Gh(ϕh) :=
∑
e∈Γ2

(p0, curl ϕh · n)0,Γ2 ,

for all φh, ϕh ∈ Ŵh
k :=

{
ϕh ∈ Ŵ : ϕh|K ∈ Wh

k(K) ∀K ∈ Ωh

}
, k ≥ 2.

We recall that the analysis developed in Sections 4.4.1 and 4.4.2.1 can be extended in order
to obtain the well-posedness and optimal error estimate in H2-norm for the scheme (4.6.4).
Moreover, the velocity and vorticity are recovery by using the same algorithm presented in
subsection 4.5.1. However, we observe that the extension to the pressure recovery technique
(cf. Section(4.5.2)) to this type of boundary conditions does not follow directly due to the
boundary and regularity conditions required for the pressure weak solution. We are going to
test the scheme (4.6.4) in Test 4.7.6.

Finally, we observe that when Γ2 = ∅ we recovery the standard Navier�Stokes system (4.2.6),
with g = 0.

4.7 Numerical experiments

In this section we present several numerical experiments to show the performance of our
VEMs proposed in Sections 4.3 and 4.5. Moreover, we test the VEM (4.6.4).

4.7.1 Some aspects of the numerical implementation

In each example to solve the nonlinear system resulting from (4.3.7), we employ the Newton
method, with a tolerance of Tol = 10−8. For the �rst and second tests we take as initial guess
the solution of the associated linear Stokes problem, while for the other examples, we will
speci�c later the initial guess taken. We test the C1-VEM, with k = 2, 3 and using di�erent
families of polygonal meshes (see Figure 4.1): i) Ω1

h: quadrilateral meshes; ii) Ω2
h: centroidal

Voronoi meshes; iii) Ω3
h: uniform triangular meshes; iv) Ω4

h: concave rhombic meshes.
In order to verify the convergence of the proposed schemes, we introduce the following

computable errors for i = 0, 1, 2 and j = 0, 1:

Ei(ψ) = Error(ψ,Hi) := |ψ − ΠD,kψh|i,h, E1(u) = Error(u,Hj) := |u− ûh|j,h,
E1(p) = Error(p,H1) := |p− Π∇,ℓph|1,h, E0(ω) = Error(ω,L2) := ∥ω − ω̂h∥0,Ω.

The experimental rates of convergence for each variable are de�ned as follows:

ri(·) := [log(Ei(·)/Êi(·))][log(h/ĥ)]−1, i = 0, 1, 2,

where Ei and Êi denote the error associated to two consecutive mesh sizes h, ĥ.
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Figure 4.1: Sample meshes. Ω1
h, Ω

2
h, Ω

3
h and Ω4

h.

4.7.2 Test 1. The exact solution of Kovasznay �ow

This �rst numerical test illustrates the performance of the VE schemes (4.3.7) and (4.5.5)
as a function of the viscosity ν. More precisely, we consider the domain Ω := (−0.5, 1.5)×(0, 2)
and the analytic solution to the Navier�Stokes system obtained by Kovasznay:

ψ(x, y) = y − 1

2π
exp(λx) sin(2πy), u(x, y) = curl ψ,

p(x, y) = −1

2
exp(2λx) + p and ω = −∆ψ,

where λ = Re
2
−
(

Re2

4
+ 4π2

)1/2
, Re := ν−1 is the Reynolds number and p ∈ R is such that

(p, 1)1,Ω = 0. The load term f and non-homogeneous Dirichlet Boundary Conditions (BCs)
are chosen so that they correspond to this exact solution. Table 4.1 shows the convergence
history of the VEMs (4.3.7) and (4.5.5), with polynomial degrees k = 3 and ℓ = 1, respectively,
employing the meshes Ω1

h and di�erent values of Re. We notice that the rates of convergence
predicted in sections 4.4.2 and 4.5 are attained by the principal unknown stream-function and
by all the postprocessed variables.

Next, in Table 4.2 we have reported the behavior of the Newton method as a function
of the Reynolds number, considering di�erent mesh sizes and the polynomial degrees k = 2
and k = 3. It can be seen that the larger Re more iterations are necessary to achieve the
tolerance. Besides, we observe that when the polynomial degree increase, then the Newton
method needs less iterations. The spaces with lines in Table 4.2 mean that the iterative method
has taken more than 100 iterations. Figure 4.2 shows plots of the exact (top) and approximated
(bottom) stream-function, pressure and vorticity, obtained with the VEMs (4.3.7), (4.5.5), and
postprocess of Section 4.5.1, using the mesh Ω1

h, with h
−1 = 64, k = 3 and Re = 40.

4.7.3 Test 2. No �ow problem for the Navier�Stokes equations

In this numerical experiment we investigate the behaviour of our VE schemes considering
the no �ow problem adapted to the Navier�Stokes system (4.2.6) from [109, Example 1.1] in the
square domain Ω := (0, 1)2. For this example we take ν = 1 and apply homogeneous Dirichlet
BCs. The load term is taken to be f = (0,Ra(3y2−y+1))T . One �nds that, the exact solution
of this problem is given by: u = 0 and p = Ra

(
y3 − 1

2
y2 + y − 7

12

)
, where Ra > 0 is a

parameter. In the simulations we will choose Ra = 1, 103, 106.
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Re h−1 E0(ψ) r0(ψ) E1(ψ) r1(ψ) E2(ψ) r2(ψ) r1(u) E1(u) E0(ω) r0(ω) E1(p) r1(p)

8 6.4962e-2 � 1.5436e-1 � 2.7533e-1 � 5.6877e-1 � 2.5657e+0 � 6.7839e-1 �
16 6.7143e-3 3.27 2.0444e-2 2.91 7.9373e-2 1.79 1.0121e-1 2.49 7.5775e-1 1.75 4.1231e-1 0.71

1 32 6.0116e-4 3.48 2.1374e-3 3.25 1.9123e-2 2.05 1.9189e-2 2.39 1.6849e-1 2.16 2.1847e-1 0.91
64 4.4368e-5 3.76 1.8703e-4 3.51 4.1140e-3 2.21 4.2898e-3 2.16 2.7603e-2 2.60 1.0726e-1 1.02
128 2.9310e-6 3.92 1.7289e-5 3.43 9.2923e-4 2.14 1.0391e-3 2.04 3.9418e-3 2.80 5.2786e-2 1.02

8 9.7355e-4 � 1.3798e-2 � 9.9287e-2 � 1.2577e-1 � 9.9847e-2 � 1.4151e-1 �
16 5.9194e-5 4.03 1.5460e-3 3.15 2.4605e-2 2.01 2.6913e-2 2.22 2.4661e-2 2.01 6.9705e-2 1.02

40 32 3.7521e-6 3.97 1.8487e-4 3.06 6.1065e-3 2.01 6.2744e-3 2.10 6.1113e-3 2.01 3.4826e-2 1.00
64 2.3312e-7 4.00 2.2728e-5 3.02 1.5215e-3 2.00 1.5368e-3 2.02 1.5219e-3 2.00 1.7398e-2 1.00
128 1.4420e-8 4.01 2.8270e-6 3.00 3.7998e-4 2.00 3.8216e-4 2.00 3.8001e-4 2.00 8.6956e-3 1.00

8 9.1889e-4 � 1.2249e-2 � 9.1498e-2 � 1.1041e-1 � 9.1519e-2 � 7.3490e-2 �
16 5.8013e-5 3.98 1.4705e-3 3.05 2.3104e-2 1.98 2.4958e-2 2.14 2.3105e-2 1.98 2.9005e-2 1.34

102 32 3.6731e-6 3.98 1.8163e-4 3.01 5.7964e-3 1.99 5.9274e-3 2.07 5.7964e-3 1.99 1.4276e-2 1.02
64 2.2908e-7 4.00 2.2614e-5 3.00 1.4503e-3 1.99 1.4593e-3 2.02 1.4503e-3 1.99 7.1074e-3 1.00
128 1.4253e-8 4.00 2.8237e-6 3.00 3.6267e-4 1.99 3.6336e-4 2.00 3.6267e-4 1.99 3.5491e-3 1.00

8 8.6904e-4 � 1.2087e-2 � 8.9298e-2 � 9.1738e-2 � 8.9296e-2 � 2.2102e-1 �
16 5.6880e-5 3.93 1.5601e-3 2.95 2.2869e-2 1.96 2.3986e-2 1.93 2.2869e-2 1.96 2.5378e-2 3.12

103 32 3.7243e-6 3.93 1.9595e-4 2.99 5.7405e-3 1.99 5.8758e-3 2.02 5.7405e-3 1.99 3.1651e-3 3.00
64 2.3621e-7 3.97 2.4484e-5 3.00 1.4364e-3 1.99 1.4456e-3 2.02 1.4364e-3 1.99 8.1697e-4 1.95
128 1.4789e-8 3.99 3.0599e-6 3.00 3.5920e-4 1.99 3.5978e-4 2.00 3.5920e-4 1.99 3.6823e-4 1.14

Table 4.1: Test 1. Errors and experimental rates of convergence for the stream-function,
velocity, vorticity and pressure, using the meshes Ω1

h, Re = 1, 40, 102, 103 and k = 3.

k mesh h−1 dofs Re = 1 Re = 10 Re = 40 Re = 102 Re = 103

8 294 3 4 5 � �
16 1371 3 4 5 5 �

2 Ω2
h 32 5796 3 4 5 5 �

64 23874 3 4 5 5 6
128 96855 3 4 5 5 6

8 259 3 4 5 5 7
16 1155 3 4 5 5 6

3 Ω1
h 32 4867 3 4 5 5 6

64 19971 3 4 5 5 6
128 80899 3 4 5 5 6

Table 4.2: Test 1. Mesh sizes, degrees of freedom and number of iterations of the Newton
method with respect to parameter Re.

We have approximated the stream-function employing the VEM (4.3.7), with k = 3 and
using the polygonal meshes Ω3

h and Ω4
h. Then, we have computed the �uid velocity employing

the postprocess (4.5.2) described in Section 4.5.1. Furthermore, using the discrete stream-
function we have approximated the �uid pressure through the virtual scheme developed in
Section 4.5.2.2, with polynomial degree ℓ := k − 2 = 1 and the same meshes Ω3

h and Ω4
h. The
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Figure 4.2: Test 1. Exact (top panels) and approximate (bottom panels) solutions stream-
function, pressure and vorticity using the VEMs (4.3.7), (4.5.5) and postprocess (4.5.2), em-
ploying the mesh Ω1

h, with h
−1 = 64, k = 3 and Re = 40.

maximum number of iterations that are required for the Newton method in this example is 3
for all the meshes.

In Figure 4.3(a) we plot the velocity errors in L2-norm and it can be seen that is zero up to
machine precision, regardless of mesh size. However, we notice that the velocity errors slightly
increases as Ra increases, which is also observed in Galerkin schemes for �uid problems that
are pressure robust; see for instance, [114, Example 1].

In Figure 4.3(b) we plot the pressure errors in H1-norm and we observe that the errors
converge optimally with the order predicted by our theory in Theorem 4.5.4. Moreover, we
notice that the pressure errors increase as Ra increases, which is expected for this example
(see [109, Example 1.1]).

We point out that our virtual scheme yields an hydrostatic velocity solution unlike the
standard mixed FEMs, where the discrete velocity is far from being equal to zero, even for Ra =
1 (see for instance [109, Figure 1.1]). We recall that our scheme is not pressure robust. However,
this good performance can be attributed to the fact for the stream-function formulation the
divergence-free constraint is satis�ed automatically for the velocity �eld.

4.7.4 Test 3. The lid-driven cavity problem

In our third test, we consider the 2D lid-driven cavity problem for the Navier�Stokes equa-
tions, describing the behaviour of a viscous incompressible �ow in a rectangular container whose
upper lid is moving at a uniform velocity and �xed BCs on all other static walls. In particular,



88 Chapter 4. C1-VEMs for the Navier Stokes problem in stream function formulation

10
-2

10
-1

10
-18

10
-16

10
-14

10
-12

10
-10

10
-8

10
-6

(a) Velocity errors

10
-2

10
-1

10
-6

10
-4

10
-2

10
0

10
2

10
4

10
6

(b) Pressure errors

Figure 4.3: Test 2. Velocity (a) and pressure (b) errors using the VEMs (4.3.7) and (4.5.5),
with the meshes Ω3

h and Ω4
h, k = 3, ℓ = 1, ν = 1 and taking di�erent values for the parameter

Ra.

we consider the unitary square domain Ω = (0, 1)2, the uniform velocity is given by u := (1, 0)T

and u = (0, 0)T is the BCs on the static walls. Thus, in terms of the stream-function the BCs
are given by: ψh = ∂xψh = 0 and ∂yψh = 1 on the upper lid and ψh = ∂xψh = ∂yψh = 0 on the
static walls. We have tested our VEMs (4.3.7) and (4.5.5), with k = 3 and ℓ = 1, respectively,
using Re = 100, 400, 1000, and setting the source term f = 0. Moreover, we have compared
our results with those obtained in [102] and [51]. For the Newton iteration, we follow the same
procedure as in [143].
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Figure 4.4: Test 3. Pro�les of the velocity, pressure and vorticity (from left to right): û1h-
velocity component, using the mesh Ω1

h, with h
−1 = 48 and taking di�erent values for Reynolds

number Re; pressure and vorticity pro�les along horizontal, with the mesh Ω1
h, with h

−1 = 128
and Re = 1000.
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In Figure 4.4 we plot the û1h-velocity component pro�le along the horizontal centre line in
the 2D lid-driven cavity problem for Re = 100, 400 and 1000, computed with uniform mesh Ω1

h

of 48 × 48 elements. Here, the solid lines represent the solution obtained by our VEM (4.3.7)
and the postprocess (4.5.2), while the symbols correspond to the values reported in reference
[102]. Moreover in the same �gure, we plot the pressure and vorticity pro�les along horizontal
center lines, for Re = 1000, using an uniform mesh Ω1

h, with h
−1 = 128. Again, the solid lines

represent the solution obtained by our VE scheme (4.5.5) and the postprocess (4.5.2), while
the symbols correspond to the values reported by [51]. The agreement between these solutions
is very good. In each case, no more than 8 iterations were su�cient to achieve tolerance Tol.

4.7.5 Test 4. Solution with less regularity

In this example, we are interesting to examine the accuracy of the scheme (4.3.7) with a exact
solution having less regularity on a nonconvex L-shaped domain. We consider Ω = (−1, 1)2 \
([0, 1)× (−1, 0]). The exact solution is given in polar coordinates by ψ(r, θ) = r4/3 sin(4θ

3
). The

analytical solution contains a singularity at the re-entrant corner of Ω, we have ψ ∈ H7/3−ε(Ω)
for all ε > 0. For this numerical experiment, we have taken ψ0

h = 0 as the initial guess.
Table 4.3 shows the errors and experimental convergence rates in H2-norm of our VE schemes
on a mesh with squares elements (as in Ω1

h), for k = 2 and k = 3. According to the regularity
of ψ, for both polynomial degrees, we expect an order of convergence in H2 as O(h1/3), which
is predicted by Theorem 4.4.3.

k h dofs E2(ψ) r2(ψ) iter

1/4 99 7.1728e-1 � 4
1/8 483 5.7219e-1 0.32 4

2 1/16 2115 4.5318e-1 0.33 4
1/32 8835 3.5945e-1 0.33 4
1/64 36099 2.8526e-1 0.33 4

k h dofs E2(ψ) r2(ψ) iter

1/4 179 6.4424e-1 � 4
1/8 835 5.1089e-1 0.33 4

3 1/16 3587 4.0540e-1 0.33 4
1/32 14851 3.2176e-1 0.33 4
1/64 60419 2.5538e-1 0.33 4

Table 4.3: Test 4. Errors for the stream-function variable in H2-norm on the L-shaped using
with square elements Ω1

h and k = 2, 3.

4.7.6 Test 5. The Navier�Stokes system with BCs on the pressure

As last experiment, we test the scheme presented in Section 4.6. We consider the domain
Ω := (0, 1)2 and the analytic solution to the Navier�Stokes system given by:

ψ(x, y) = − 1

π2
(1− x)2 cos(2πx) cos(2πy), u(x, y) = curl ψ,

p(x, y) = sin((π/2)x) cos(2πy) + p and ω = −∆ψ.

Table 4.4 shows the errors and convergence rates in H2-norm for the stream-function, by using
the VEM (4.6.4). Moreover, we show the errors and convergence rates in H1, L2-norm for the
velocity and vorticity, respectively, employing the postprocess 4.5.1. For this experiment we
have used the mesh Ω4

h and the polynomial degrees k = 2.
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k h dofs E2(ψ) r2(ψ) E1(u) r2(u) E0(ω) r0(ω) iter

1/4 129 5.5066e-1 � 1.2499e+0 � 4.0096e-1 � 3
1/8 545 2.8697e-1 0.94 6.6735e-1 0.90 1.4378e-1 1.47 4

2 1/16 2241 1.4295e-1 1.00 3.3722e-1 0.98 4.9535e-2 1.53 4
1/32 9089 7.1421e-2 1.00 1.6863e-1 0.99 2.0831e-2 1.24 4
1/64 36609 3.5710e-2 0.99 8.4213e-2 1.00 9.8326e-3 1.00 4

Table 4.4: Test 5. Errors in norm H2- H1- and L2-norms for stream-function, velocity and
vorticity �elds, respectively, obtained with the VE scheme (4.6.4), the family mesh Ω4

h and
k = 2.



Chapter 5

A fully-discrete virtual element method

for the nonstationary Boussinesq

equations in stream-function form

5.1 Introduction

The Boussinesq system is typically used to describe the natural convection in a viscous
incompressible �uid, which consists of coupling between the Navier�Stokes equations with a
convection-di�usion equation. Such coupling is done by means of a buoyancy term (in the
momentum equation of the Navier�Stokes system) and convective heat transfer (in the energy
equation). Applications of this �uid-thermal system appears in several engineering processes,
such as, industrial ovens, cooling procedures (cooling of steel industries, electronic and electric
equipments, nuclear reactors, etc). Moreover, this physical phenomena appears in oceanography
and geophysics when studying oceanic �ows and climate predictions.

Due its relevance and presence in di�erent applications, several works have been devoted to
study these equations (and some variants). For the analysis of existence, uniqueness and regu-
larity of the solution, we refer to [140, 121]. Besides, over the last decades several discretizations
have been employed to solve this system; see for instance [47, 50, 150, 161, 144, 9, 82, 85, 11]
and the references therein, where the steady and unsteady regimens, temperature-dependent
parameters problems have been studied, considering the classical velocity-pressure-temperature
and pseudostress-velocity-temperature formulations.

Typically, in the existing literature, the majority of the discretizations for the �uid part
involve the standard velocity�pressure formulation for the Boussinesq system. However, some
researchers have developed numerical methods by using the stream-function�vorticity and pure
stream-function approaches to approximate this system. For instance, in [148] a �nite element
discretization is considered to solve the problem in stream-function�vorticity�temperature form,
numerical solutions are obtained for the natural convection in a square cavity and compared
with some results available in the literature. In [152] a fourth-order compact �nite di�er-
ence scheme is formulated for solving the steady regimen, by using also the stream-function�
vorticity�temperature formulation. Numerical experiments are also presented. More recently,
in [120, 160], the authors present an analysis of stability and convergence for a fourth-order �nite
di�erence method for the unsteady regimen of Boussinesq equations with the stream-function�
vorticity�temperature approach. Numerical results are provided in [120]. On the other hand,

91
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in [43], the authors employed a C1 �nite element method to approximate the stream-function
variable. Numerical solution for the 2D natural convection in a square cavity are presented and
compared with benchmark results [155].

For two dimensional �uid problems, the formulation in terms of the stream-function presents
several attractive features, among these we can mention: the velocity vector and pressure �elds
are not present in the formulation, instead only one scalar variable (the stream-function) is the
main unknown to approximate. By construction the incompressibility constraint is automati-
cally satis�ed. Moreover, the resulting trilinear form in the momentum equation is naturally
skew-symmetric, which allows more direct stability and convergence arguments. On the other
hand, in comparison with the stream-function�vorticity form, our approach avoid the di�cul-
ties related with the de�nition of the boundary values for the vorticity �eld, present in such
formulation.

Nevertheless, the construction of subspaces of H2 (space where the stream-function belongs)
by using �nite element method involve high order polynomials and a large number of degrees
of freedom, which are considered a di�cult task principally from the computational viewpoint,
even for triangular decompositions. As an alternative to avoid the aforementioned drawback, we
consider the approach presented in [58, 77] to introduce C1-virtual element schemes of arbitrary
order k ≥ 2, to approximate the stream-function variable of the Boussinesq system.

The Virtual Element Method (VEM) were introduced in the seminal work [27] as an ex-
tension of Finite Elements Method (FEM) to polygonal or polyhedral decompositions. In this
�rst work the Poisson equation is used to illustrate the main ideas of VEM approach. The
virtual element spaces are constituted by polynomial and nonpolynomial functions, the degrees
of freedom must be chosen appropriately so that the sti�ness matrix and load term can be
computed without computing these nonpolynomial functions. Later on, in [58] is introduced a
new family of C1-virtual element of high order k ≥ 2, to solve Kirchho�-Love plate problems,
which in the lowest order polynomial degree employed only 3 degrees of freedom per mesh
vertex (the function and its gradient values vertex). This fact represents a very signi�cant
advantage over C1 schemes based on FEM. Moreover, in [36, 19], the authors discuss the ap-
plication of VEM to construct �nite dimensional spaces of arbitrarily regular Cα, with α ≥ 1,
where promising results have been observed to solve equations involving high order PDEs. In
the last year a wide variety of second- and fourth-order problems have been discretized by using
VEM. Due to the large number of papers available in the literature, we here limit ourselves in
citing some representative articles within the area of �uid mechanics, where several models have
been addressed with the conforming VEM approach: the Stokes equations [17, 76, 34, 157], the
Brinkman model [60, 133], Navier�Stokes and incompressible �ows [35, 41, 97, 31, 42, 83], the
Quasi-Geostrophic equations of the ocean [136] and Boussinesq system [99, 21], where di�erent
formulations have been considered.

According to the previously discussed, in the present contribution, we are interested in
further exploring the ability of VEM to approximate coupled nonlinear �uid �ow problems
considering the stream-function approach. More precisely, we develop and analyze a fully-
discrete VE scheme for solving the nonstationary Boussinesq system. Under assumption that
the domain is simply connected and by using the incompressibility condition of the velocity �eld,
we write a equivalent variational formulation in terms of the stream-function and temperature
unknowns. The discretization for the spatial variables is based on the coupling of C1- and
C0- conforming virtual element approaches [58, 27], for the stream-function and temperature
�elds, respectively, and we handle the time derivatives with a classical backward Euler implicit
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method. Employing the discretizations mentioned above, we propose a fully-discrete scheme of
high order, which is fully-coupled, implicit in the nonlinear terms and unconditionally stable.
By using the �xed point theory, we establish the corresponding existence of a discrete solution
and, under a small time step assumption, we prove that such discrete solution is also unique.
Moreover, employing the natural skew-symmetry property of the resulting discrete trilinear
form (in the momentum equation) we provide optimal error estimates in H2- and H1-norms for
the stream-function and temperature, respectively.

The remainder of this chapter has been organized as follows: In Section 5.2 we recall the un-
steady Boussinesq equations in its standard velocity�pressure�temperature formulation. More-
over, we write a weak form of the system in terms of the stream-function and temperature
variables. We �nish this section by recalling the corresponding stability and well-posedness
results for the continuous problem. In Section 5.3 we present the VE discretization, intro-
ducing the polygonal decomposition and mesh notations, the construction of stream-function
and temperature VE spaces along with their corresponding degrees of freedom, the polynomial
projections and the construction of the multilinear forms. In Section 5.4 we present the fully-
discrete VE formulation and provide its stability and well-posedness. In Section 5.5 we derive
error estimates for the stream-function and temperature �elds. Finally, three numerical exper-
iments, including the solution of the 2D natural convection benchmark problem, are presented
in Section 5.6, to illustrate the good performance of the scheme and con�rm our theoretical
predictions.

5.2 The continuous problem

5.2.1 The time dependent Boussinesq system

In this work we are interested in approximating the solution of the nonstationary Boussinesq
system, modeling incompressible nonisothermal �uid �ows. The system consists of a coupling
between the Navier�Stokes equations with a convection-di�usion equation for the temperature
variable. The coupling is by means of a buoyancy term (in the momentum equation of the
Navier�Stokes system) and convective heat transfer (in the energy equation). More precisely,
given suitable initial data (u0, θ0), the aforementioned system of equations are given by (see
[140]):

∂tu− ν∆u+ (u · ∇)u+∇p− gθ = fψ in Ω× (0, T ),

div u = 0 in Ω× (0, T ),

u = 0 on Γ× (0, T ),

u(0) = u0 in Ω at t = 0,

(p, 1)0,Ω = 0

∂tθ − κ∆θ + u · ∇θ = fθ in Ω× (0, T ),

θ = 0 on Γ× (0, T ),

θ(0) = θ0 in Ω at t = 0,

(5.2.1)

where u : Ω × (0, T ) → R2, p : Ω × (0, T ) → R and θ : Ω × (0, T ) → R denote the velocity,
pressure and temperature �elds. The parameters ν > 0 and κ > 0 are the viscosity �uid and
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the thermal conductivity, respectively. The functions fψ : Ω× (0, T ) → R2, fθ : Ω× (0, T ) → R
is a set of external forces and g : Ω× (0, T ) → R2 is a force per unit mass.

In next subsection, by using the incompressibility property of the velocity �eld, we will
write an equivalent weak formulation of the system (5.2.1) in terms of the stream-function and
temperature variables.

5.2.2 The time dependent stream-function�temperature formulation

Let us introduce the following space of functions belonging to H1
0(Ω) with vanishing diver-

gence:
Z :=

{
v ∈ H1

0(Ω) : div v = 0 in Ω
}
.

Since Ω ⊂ R2 is simply connected, a well known result states that a vector function v ∈ Z if
and only if there exists a scalar function φ ∈ H2(Ω) (called stream-function), such that

v = curl φ ∈ H1
0(Ω).

The function φ is de�ned up to a constant (see [103]). Thus, we consider the following space

H2
0(Ω) =

{
φ ∈ H2(Ω) : φ = ∂nφ = 0 on Γ

}
.

Then, choosing ψ(t) ∈ H2
0(Ω) the stream-function of the velocity �eld u(t) ∈ Z (i.e. u(t) =

curl ψ(t)) in the momentum equation of system (5.2.1), testing against a function v = curl ϕ
with ϕ ∈ H2

0(Ω) and applying twice an integration by parts, we have∫
Ω

curl (∂tψ) · curl ϕ+ ν

∫
Ω

D2ψ : D2ϕ+

∫
Ω

∆ψ curl ψ · ∇ϕ−
∫
Ω

gθ · curl ϕ =

∫
Ω

fψ · curl ϕ,

for all ϕ ∈ H2
0(Ω). On other hand, multiplying by v ∈ H1

0(Ω) and integrating by parts in the
energy equation of system (5.2.1), we obtain∫

Ω

∂tθv + κ

∫
Ω

∇θ · ∇v +
∫
Ω

(curl ψ · ∇θ)v =

∫
Ω

fθv ∀v ∈ H1
0(Ω).

From the above identities, we obtain the following weak formulation for system (5.2.1): given
ψ0 ∈ H1

0(Ω), θ0 ∈ L2(Ω), g ∈ L∞(0, T ;L∞(Ω)), and the external forces fψ ∈ L2(0, T ;L2(Ω)), fθ ∈
L2(0, T ; L2(Ω)), �nd (ψ, θ) ∈ L2(0, T ; H2

0(Ω))× L2(0, T ; H1
0(Ω)) such that

MF (∂tψ, ϕ) + νAF (ψ, ϕ) +BF (ψ;ψ, ϕ)− C(θ, ϕ) = Fψ(ϕ) ∀ϕ ∈ H2
0(Ω),

MT (∂tθ, v) + κAT (θ, v) +BT (ψ; θ, v) = Fθ(v) ∀v ∈ H1
0(Ω),

ψ(0) = ψ0, θ(0) = θ0,

(5.2.2)

for a.e. t ∈ (0, T ), where the bilinear forms MF (·, ·), MT (·, ·), AF (·, ·) and AT (·, ·) are given by

MF (·, ·) : H2
0(Ω)× H2

0(Ω) → R, MF (φ, ϕ) :=

∫
Ω

curl φ · curl ϕ, (5.2.3)

MT (·, ·) : H1
0(Ω)× H1

0(Ω) → R, MT (v, w) :=

∫
Ω

vw, (5.2.4)

AF : H2
0(Ω)× H2

0(Ω) → R, AF (φ, ϕ) :=

∫
Ω

D2φ : D2ϕ, (5.2.5)

AT : H1
0(Ω)× H1

0(Ω) → R, AT (v, w) :=

∫
Ω

∇v · ∇w, (5.2.6)
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whereas the convective trilinear forms BF (·; ·, ·) and BT (·; ·, ·) are de�ned by

BF : H2
0(Ω)× H2

0(Ω)× H2
0(Ω) → R, BF (ζ;φ, ϕ) :=

∫
Ω

∆ζ curl φ · ∇ϕ, (5.2.7)

BT : H2
0(Ω)× H1

0(Ω)× H1
0(Ω) → R, BT (φ; v, w) :=

∫
Ω

(curl φ · ∇v)w. (5.2.8)

The bilinear form C(·, ·) associated to the buoyancy term is given by

C : H1
0(Ω)× H2

0(Ω) → R, C(v, ϕ) :=

∫
Ω

gv · curl ϕ (5.2.9)

and the functionals Fψ(·) and Fθ(·) are given by

Fψ : H2
0(Ω) → R, Fψ(ϕ) :=

∫
Ω

fψ · curl ϕ, (5.2.10)

Fθ : H
1
0(Ω) → R, Fθ(v) :=

∫
Ω

fθv. (5.2.11)

We can observe by a direct computation that the trilinear form BT (·; ·, ·) de�ned in (5.2.8) is
skew-symmetric, i.e.,

BT (φ; v, w) = −BT (φ;w, v) ∀φ ∈ H2
0(Ω) and ∀v, w ∈ H1

0(Ω).

Therefore, the bilinear form BT (·; ·, ·) is equal to its skew-symmetric part, de�ned by

Bskew(φ; v, w) :=
1

2
(BT (φ; v, w)−BT (φ;w, v)) ∀φ ∈ H2

0(Ω) and ∀v, w ∈ H1
0(Ω).

(5.2.12)
According with the above discussion, we rewrite system (5.2.2) in the following equivalent for-
mulation: given the initial conditions (ψ0, θ0) ∈ H1

0(Ω)×L2(Ω) and the forces fψ ∈ L2(0, T ;L2(Ω)),
fθ ∈ L2(0, T ; L2(Ω)) and g ∈ L∞(0, T ;L∞(Ω)), �nd (ψ, θ) ∈ L2(0, T ; H2

0(Ω)) × L2(0, T ; H1
0(Ω))

such that, for a.e. t ∈ (0, T )

MF (∂tψ, ϕ) + νAF (ψ, ϕ) +BF (ψ;ψ, ϕ)− C(θ, ϕ) = Fψ(ϕ) ∀ϕ ∈ H2
0(Ω),

MT (∂tθ, v) + κAT (θ, v) +Bskew(ψ; θ, v) = Fθ(v) ∀v ∈ H1
0(Ω),

ψ(0) = ψ0, θ(0) = θ0,

(5.2.13)

5.2.3 Well-posedness of the weak formulation

In this subsection we recall some basic properties of the continuous forms and the existence
and uniqueness properties of the solution to problem (5.2.13).

Lemma 5.2.1. For all ζ, φ, ϕ ∈ H2
0(Ω) and for each v, w ∈ H1

0(Ω), the forms de�ned in (5.2.3)-



96 Chapter 5. A VEM for the nonstationary Boussinesq equations

(5.2.12) satisfy the following properties:

|MF (φ, ϕ)| ≤ CMF
∥φ∥1,Ω∥ϕ∥1,Ω and MF (ϕ, ϕ) ≥ ∥ϕ∥21,Ω,

|MT (v, w)| ≤ CMT
∥v∥0,Ω∥w∥0,Ω and MT (v, v) ≥ ∥v∥20,Ω,

|AF (φ, ϕ)| ≤ CAF ∥φ∥2,Ω∥ϕ∥2,Ω and AF (ϕ, ϕ) ≥ αAF ∥ϕ∥22,Ω,
|AT (v, w)| ≤ CAT ∥v∥1,Ω∥w∥1,Ω and AT (v, v) ≥ αAT ∥v∥21,Ω,

|BF (ζ;φ, ϕ)| ≤ CBF ∥ζ∥2,Ω∥φ∥2,Ω∥ϕ∥2,Ω and BF (ζ;ϕ, ϕ) = 0,

|Bskew(ζ; v, w)| ≤ CBT ∥ζ∥2,Ω∥v∥1,Ω∥w∥1,Ω and Bskew(ζ; v, v) = 0,

|C(v, ϕ)| ≤ ∥g∥∞,Ω∥v∥0,Ω∥ϕ∥1,Ω,
|Fψ(ϕ)| ≤ CFψ∥fψ∥0,Ω∥ϕ∥1,Ω, |Fθ(v)| ≤ CFθ∥fθ∥0,Ω∥v∥0,Ω.

The equivalence between the (weak form of) problem (5.2.1) and its stream-function formu-
lation (5.2.13) is well known and easy to check. The couple (ψ, θ) satis�es (5.2.13) if and only
if there exists a unique p such that the triple (u, θ, p) in L2(0, T ;H1

0(Ω)) × L2(0, T ; H1
0(Ω)) ×

L2(0, T ; L2
0(Ω)) solves (the variational formulation of) (5.2.1), where u = curlψ. Therefore the

existence result for problem (5.2.13) follow immediately from known results for (5.2.1) (see for
instance [150]) and the uniqueness follow by combining the arguments used in [140].

Theorem 5.2.1. Problem (5.2.13) admits a unique solution (ψ, θ), satisfying ψ ∈ L2(0, T ; H2
0(Ω))∩

L∞(0, T ; H1
0(Ω)) and θ ∈ L2(0, T ; H1

0(Ω))∩L∞(0, T ; L2(Ω)). Furthermore there exists a positive
constant C, such that

∥ψ∥L∞(0,T ;H1
0(Ω)) + ∥ψ∥L2(0,T ;H2

0(Ω)) + ∥θ∥L∞(0,T ;L2(Ω)) + ∥θ∥L2(0,T ;H1
0(Ω))

≤ C
(
∥fψ∥L2(0,T ;L2(Ω)) + ∥fθ∥L2(0,T ;L2(Ω)) + ∥θ0∥0,Ω + |ψ0|1,Ω

)
.

Now, we recall the Ladyzhenskaya inequality (see for instance [11, Lemma 2.2]), needed in
the sequel:

∥v∥L4(Ω) ≤ 2
1
4∥v∥

1
2
1,Ω∥v∥

1
2
0,Ω ∀v ∈ H1

0(Ω). (5.2.14)

We close this section with the following remark.

Remark 5.2.1. For the bilinear form AF (·, ·) de�ned in (5.2.5), we have the following classical
identity:

AF (φ, ϕ) =

∫
Ω

∆φ∆ϕ ∀φ, ϕ ∈ H2
0(Ω). (5.2.15)

We recall that at discrete level the representations (5.2.5) and (5.2.15) will lead to di�erent
approximations, in general. In next section we will consider the representation (5.2.5), i.e.,
AF (φ, ϕ) =

∫
Ω
D2φ : D2ϕ, in order to construct the projection Πk,D

K (see (5.3.2)). However, we
also propose an alternative discretization inspired by (5.2.15) in Remark 5.3.2 below.

5.3 Virtual elements discretization

In this section we will introduce C1- and C0-conforming schemes of arbitrary order k ≥ 2
and ℓ ≥ 1, for the numerical approximation of the stream-function and temperature unknowns
of problem (5.2.13), respectively. First, we start by introducing some mesh notations together
with the respective local and global virtual spaces and their degrees of freedom. Moreover,
we introduce the classical VEM polynomial projections and we present the discrete multilinear
forms.
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5.3.1 Polygonal decompositions and notations

Henceforth, we will denote by K a general polygon, e a general edge of ∂K, hK the diameter
of the element K and by he the length of edge e. Let {Th}h>0 be a sequence of decompositions
of Ω into non-overlapping polygons K, where h := maxK∈Th hK . Moreover, NK denotes the
number of vertices of K and we de�ne the unit normal vector nK , that points outside of K and
the unit tangent vector tK to K obtained by a counterclockwise rotation of nK .

For each integer n ≥ 0, we de�ne the discontinuous piecewise n-order polynomial by

Pn(Th) :=
{
q ∈ L2(Ω) : q|K ∈ Pn(K) ∀K ∈ Th

}
.

Besides, for s > 0, we consider the broken spaces

Hs(Th) :=
{
ϕ ∈ L2(Ω) : ϕ|K ∈ Hs(K) ∀K ∈ Th

}
endowed with the following broken seminorm: |ϕ|s,h :=

(∑
K∈Th |ϕ|

2
s,K

)1/2
.

For the theoretical convergence analysis, we suppose that for all h, each element K in the
mesh family {Th}h>0 satis�es the following assumptions [27, 77] for a uniform constant ρ > 0:

A1 : K is star-shaped with respect to every point of a ball of radius greater or equal to ρhK ;

A2 : every edge e ∈ ∂K has the length greater or equal to ρhK .

5.3.2 Virtual element space for the stream-function

In the present section we introduce a virtual space of order k ≥ 2 used to approximate the
stream-function unknown.

For each polygon K ∈ Th and every integer k ≥ 2, let k̂ := max{k, 3} and W̃h
k(K) be the

�nite dimensional space introduced in [77]:

W̃h
k(K) :=

{
ϕh ∈ H2(K) : ∆2ϕh ∈ Pk−2(K), ϕh|∂K ∈ C0(∂K), ϕh|e ∈ Pk̂(e),

∇ϕh|∂K ∈ C0(∂K), ∂neKϕh ∈ Pk−1(e) ∀e ∈ ∂K
}
.

Next, for ϕh ∈ W̃h
k(K), we introduce the following set of linear operators:

� DW1 : the values of ϕh(vi), for all vertex vi of the polygon K;

� DW2 : the values of hvi∇ϕh(vi), for all vertex vi of the polygon K;

� DW3 : for k ≥ 3, the moments on edges up to degree k − 3:

(q, ∂neKϕh)0,e ∀q ∈ Mk−3(e), ∀ edge e;

� DW4 : for k ≥ 4, the moments on edges up to degree k − 4:

h−1
e (q, ϕh)0,e ∀q ∈ Mk−4(e), ∀ edge e;

� DW5 : for k ≥ 4, the moments on polygons up to degree k − 4:

h−2
K (q, ϕh)0,K ∀q ∈ Mk−4(K), ∀ polygon K,
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where for each vertex vi, we chose hvi as the average of the diameters of the elements having
vi as a vertex and Mn(K) denote the scaled monomials of degree n, for each n ≥ 0 (for further
details see [58]).

In order to construct an approximation for the bilinear form AF (·, ·), we consider the oper-
ator P0 : C

0(∂K) → P0(K) de�ned by the following average:

P0ϕh =
1

NK

NK∑
i=1

ϕh(vi), (5.3.1)

where vi, 1 ≤ i ≤ NK , are the vertices of K. Then, for each polygon K, we de�ne the projector:

Πk,D
K : W̃h

k(K) → Pk(K) ⊂ W̃h
k(K),

as the solution of the local problems

AKF (ϕh − Πk,D
K ϕh, qk) = 0 ∀qk ∈ Pk(K),

P0(ϕh − Πk,D
K ϕh) = 0, P0(∇(ϕ− Πk,D

K ϕh)) = 0,
(5.3.2)

where AKF (·, ·) is the restriction of the global bilinear form AF (·, ·) (cf. (5.2.5)) on each polygon
K.

Remark 5.3.1. The operator Πk,D
K : W̃h

k(K) → Pk(K) is explicitly computable for every ϕh ∈
W̃h

k(K), using only the information of the linear operators DW1 − DW5; see for instance
[77, 133].

Now, we will present the local stream-function virtual space. For any K ∈ Th and each
integer k ≥ 2, we consider the following local enhanced virtual space

Wh
k(K) :=

{
ϕh ∈ W̃h

k(K) : (q∗ , ϕh − Πk,D
K ϕh)0,K = 0 ∀q∗ ∈ M∗

k−3(K) ∪M∗
k−2(K)

}
, (5.3.3)

where M∗
k−3(K) and M∗

k−2(K) are scaled monomials of degree k−3 and k−2, respectively (see
[7]), with the convention that M∗

−1(K) := ∅. For further details, see for instance [77] (see also
[58, 18, 133]).

For k ≥ 2, we introduce an additional projector, which will be used to build an approxima-

tion of the bilinear formMF (·, ·). Such projector Πk,∇⊥

K : W̃h
k(K) → Pk(K) ⊂ W̃h

k(K) is de�ned
as the solution of the local problems:

MK
F (ϕh − Πk,∇⊥

K ϕh, qk) = 0 ∀qk ∈ Pk(K),

P0(∇(ϕh − Πk,∇⊥

K ϕh)) = 0,

whereMK
F (·, ·) is the restriction of the global bilinear formMF (·, ·) (cf. (5.2.3)) on each polygon

K.
We summarize the main properties of the local virtual space Wh

k(K) de�ned in (5.3.3) (for
the proof, we refer to [7, 58, 77, 133]).

� Pk(K) ⊂ Wh
k(K) ⊂ W̃h

k(K);

� The sets of linear operators DW1 − DW5 constitutes a set of degrees of freedom for
Wh

k(K);
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� The operators Πk,D
K : Wh

k(K) → Pk(K) and Πk,∇⊥

K : Wh
k(K) → Pk(K) are computable

using only the degrees of freedom DW1−DW5.

Now, we present our global virtual space to approximate the stream-function of the Boussi-
nesq system (5.2.13). For each decomposition Th of Ω into simple polygons K, we de�ne

Wh
k :=

{
ϕh ∈ H2

0(Ω) : ϕh|K ∈ Wh
k(K) ∀K ∈ Th

}
.

5.3.3 Virtual element space for the temperature

In this subsection we will introduce a C0-virtual element space of high order ℓ ≥ 1 to
approximate the temperature �eld of problem (5.2.13). To this end, for each polygon K ∈ Th,
we consider the following �nite dimensional space (see [7, 28, 65]):

H̃h
ℓ (K) :=

{
wh ∈ H1(K) ∩ C0(∂K) : ∆wh ∈ Pℓ(K), wh|e ∈ Pℓ(e) ∀e ∈ ∂K

}
.

For each wh ∈ H̃h
ℓ (K) we consider the following set of linear operators:

� DH1 : the values of wh(vi), for all vertex vi of the polygon K.

� DH2 : for ℓ ≥ 2, the moments on edges up to degree ℓ− 2:

h−1
e (q, wh)0,e ∀q ∈ Mℓ−2(e), ∀ edge e;

� DH3 : for ℓ ≥ 2, the moments on element K up to degree ℓ− 2:

h−2
K (q, wh)0,K ∀q ∈ Mℓ−2(E), ∀ polygon K,

where Mn(K) denote the scaled monomials of degree n, for each n ≥ 0 (for further details

see [7, 65]). Now, we de�ne the projector Π∇,ℓ
K : H̃h

ℓ (K) → Pℓ(K) ⊂ H̃h
ℓ (K), as the solution of

the local problems:

AKT (wh − Π∇,ℓ
K wh, rℓ) = 0 ∀rℓ ∈ Pℓ(K),

P0(wh − Π∇,ℓ
K wh) = 0,

where AKT (·, ·) is the restriction of the global bilinear form AT (·, ·) (cf. (5.2.6)) on each polygon

K and the operator P0(·) is de�ned in (5.3.1). We have that the operator Π∇,ℓ
K : H̃h

ℓ (K) → Pℓ(K)
is computable using the set DH1 −DH3 (see for instance, [7, 28, 65]). In addition, by using

this projection and the de�nition of space H̃h
ℓ (K), we introduce our local virtual space to

approximate the temperature �eld:

Hh
ℓ (K) :=

{
wh ∈ H̃h

ℓ (K) : (r∗, wh − Π∇,ℓ
K wh)0,K = 0 ∀r∗ ∈ M∗

ℓ(K) ∪M∗
ℓ−1(K)

}
,

where M∗
ℓ(K) and M∗

ℓ−1(K) are scaled monomials of degree ℓ and ℓ− 1, respectively, with the
convention that M∗

−1(K) := ∅ (see [7, 65]).
Now, we summarize the main properties of the local virtual spaces Hh

ℓ (K) (for a proof we
refer to [7, 28, 65]):
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� Pℓ(K) ⊂ Hh
ℓ (K) ⊂ H̃h

ℓ (K);

� The sets of linear operatorsDH1−DH3 constitutes a set of degrees of freedom for Hh
ℓ (K);

� The operator Π∇,ℓ
K : Hh

ℓ (K) → Pℓ(K) is also computable using the degrees of freedom
DH1−DH3.

Next, we present our global virtual space to approximate the �uid temperature of the
Boussinesq system (5.2.13). For each decomposition Th of Ω into simple polygons K, we de�ne

Hh
ℓ :=

{
wh ∈ H1

0(Ω) : wh|K ∈ Hh
ℓ (K) ∀K ∈ Th

}
.

5.3.4 L2-projections and the discrete forms

In this subsection we introduce some functions built from the classical L2-polynomial pro-
jections, which will be useful to construct an approximation for the continuous multilinear
forms de�ned in Section 5.2.2. We start recalling the usual L2(K)-projection onto the scalar
polynomial space Pn(K), with n ∈ N ∪ {0}: for each ϕ ∈ L2(K), the function Πn

Kϕ ∈ Pn(K) is
de�ned as the unique function, such that

(qn, ϕ− Πn
Kϕ)0,K = 0 ∀qn ∈ Pn(K). (5.3.4)

An analogous de�nition holds for the L2(K)-projection onto the vectorial polynomial space
Pn(K), which we will denote by Πn

K .
We recall that for all su�ciently regular ϕ (for the right hand side to make sense) there

exists C > 0, independent of K and hE, such that (see [35, Page 10]):

∥Πn
Kϕ∥L4(K) ≤ C∥ϕ∥L4(K) and ∥Πn

Kϕ∥0,K ≤ ∥ϕ∥0,K . (5.3.5)

The same properties hold for the vectorial version.
The following lemma establishes that certain polynomial functions are computable onWh

k(K),
using only the information of the degrees of freedom DW1−DW5 (see for instance [77, 133]).

Lemma 5.3.1. For k ≥ 2, let Πk−2
K : L2(K) → Pk−2(K) and Πk−1

K : L2(K) → Pk−1(K)
be the operators de�ned by the relation (5.3.4) and by its vectorial version. Then, for each
ϕh ∈ Wh

k(K) the polynomial functions

Πk−2
K ϕh, Πk−2

K ∆ϕh, Πk−1
K ∇ϕh and Πk−1

K curl ϕh

are computable using only the information of the degrees of freedom DW1−DW5.

For the space Hh
ℓ (K) and its degrees of freedom DH1−DH3, we have the following result

(see for instance [28, 65]).

Lemma 5.3.2. For ℓ ≥ 1, let Πℓ−1
K : L2(K) → Pℓ−1(K), Πℓ

K : L2(K) → Pℓ(K) and Πℓ−1
K :

L2(K) → Pℓ−1(K) be the operators de�ned by the relation (5.3.4) and by its vectorial version,
respectively. Then, for each wh ∈ Hh

ℓ (K) the polynomial functions

Πℓ−1
K wh, Πℓ

Kwh and Πℓ−1
K ∇wh

are computable using only the information of the degrees of freedom DH1−DH3.
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Now, using the functions introduced above, we will construct the discrete version of the forms
de�ned in Section 5.2.2. First, let scK : Wh

k(K)×Wh
k(K) → R and sDK : Wh

k(K)×Wh
k(K) → R

be any symmetric positive de�nite bilinear forms to be chosen to satisfy:

c0M
K
F (ϕh, ϕh) ≤ scK(ϕh, ϕh) ≤ c1M

K
F (ϕh, ϕh) ∀ϕh ∈ Ker(Πk,∇⊥

K ),

c2A
K
F (ϕh, ϕh) ≤ sDK(ϕh, ϕh) ≤ c3A

K
F (ϕh, ϕh) ∀ϕh ∈ Ker(Πk,D

K ),
(5.3.6)

with c0, c1, c2 and c3 are positive constants independent of h andK. We will choose the following
representation satisfying (5.3.6) (see [133, Proposition 3.5]):

sDK(φh, ϕh) := h−2
K

Ndof
K∑
i=1

dof
Wh
k (K)

i (φh)dof
Wh
k (K)

i (ϕh) and

scK(φh, ϕh) :=

Ndof
K∑
i=1

dof
Wh
k (K)

i (φh)dof
Wh
k (K)

i (ϕh),

where Ndof
K := dim(Wh

k(K)) and the operator dof
Wh
k (K)

j (ϕ) associates to each smooth enough

function ϕ the jth local degree of freedom dof
Wh
k (K)

j (ϕ), with 1 ≤ j ≤ Ndof
K .

On each polygon K, for all φh, ϕh ∈ Wh
k(K) we de�ne the local discrete bilinear forms

Mh,K
F (·, ·) and Ah,KF (·, ·) as follows

Mh,K
F (φh, ϕh) :=MK

F

(
Πk,∇⊥

K φh,Π
k,∇⊥

K ϕh
)
+ scK

(
(I− Πk,∇⊥

K )φh, (I− Πk,∇⊥

K )ϕh
)

(5.3.7)

Ah,KF (φh, ϕh) := AKF
(
Πk,D
K φh,Π

k,D
K ϕh

)
+ sDK

(
(I− Πk,D

K )φh, (I− Πk,D
K )ϕh

)
, (5.3.8)

For the approximation of the local trilinear form BK
F (·; ·, ·), for all ζh, φh, ϕh ∈ Wh

k(K), we
consider

Bh,K
F (ζh;φh, ϕh) :=

∫
K

[(
Πk−2
K ∆ζh

)(
Πk−1
K curl φh

)]
·Πk−1

K ∇ϕh. (5.3.9)

For the treatment of the right-hand side associate to the �uid equation, we set the following
local load term:

F h,K
ψ (ϕh) =

∫
K

fψ(t) ·Πk−1
K curl ϕh ∀ϕh ∈ Wh

k(K), for a.e. t ∈ (0, T ).

The following result establishes the usual k-consistency and stability properties for the
discrete local forms Mh,K

F (·, ·) and Ah,KF (·, ·).

Proposition 5.3.1. The local bilinear forms de�ned in (5.2.3), (5.2.5), (5.3.7) and (5.3.8),
satisfy the following properties:

� k-consistency: for all K ∈ Th, we have that

Mh,K
F (q, ϕh) =MK

F (q, ϕh), ∀q ∈ Pk(K), ∀ϕh ∈ Wh
k(K)

Ah,KF (q, ϕh) = AKF (q, ϕh) ∀q ∈ Pk(K), ∀ϕh ∈ Wh
k(K).

� stability and boundedness: there exist positive constants αi, i = 1, . . . , 4, independent of
K, such that:

α1M
K
F (ϕh, ϕh) ≤Mh,K

F (ϕh, ϕh) ≤ α2M
K
F (ϕh, ϕh) ∀ϕh ∈ Wh

k(K),

α3A
K
F (ϕh, ϕh) ≤ Ah,KF (ϕh, ϕh) ≤ α4A

K
F (ϕh, ϕh) ∀ϕh ∈ Wh

k(K).
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Proof. The proof follows standard arguments in the VEM literature (see [18, 27, 28]).

Now, we continue with the construction of the forms associated to the energy equation.
First, let s0K(·, ·) and s∇K(·, ·) be any symmetric positive de�nite bilinear forms such that

c4M
K
T (vh, vh) ≤ s0K(vh, vh) ≤ c5M

K
T (vh, vh) ∀vh ∈ Ker(Πℓ

K),

c6A
K
T (vh, vh) ≤ s∇K(vh, vh) ≤ c7A

K
T (vh, vh) ∀vh ∈ Ker(Π∇,ℓ

K ),
(5.3.10)

for some positive constants c4, c5, c6 and c7, independent of h and K. We will choose the
classical representation for these stabilizing forms satisfying property (5.3.10) (see [33, 55, 65]):

s0K(vh, wh) := h2K

dim(Hhℓ (K))∑
j=1

dof
Hhℓ (K)
j (vh)dof

Hhℓ (K)
j (wh),

s∇K(vh, wh) :=

dim(Hhℓ (K))∑
j=1

dof
Hhℓ (K)
j (vh)dof

Hhℓ (K)
j (wh),

where the operator dof
Hhℓ (K)
j (v) associates to each smooth enough function v the jth local degree

of freedom dof
Hhℓ (K)
j (v), with 1 ≤ j ≤ dim(Hh

ℓ (K)). Then, for all vh, wh ∈ Hh
ℓ (K), we set the

following approximation for the forms MK
T (·, ·) and AKT (·, ·) (cf. (5.2.4) and (5.2.6))

Mh,K
T (vh, wh) :=MK

T

(
Πℓ
Kvh,Π

ℓ
Kwh

)
+ s0K

(
(I− Πℓ

K)vh, (I− Πℓ
K)wh

)
Ah,KT (vh, wh) :=

∫
K

Πℓ−1
K ∇vh ·Πℓ−1

K ∇wh + s∇K
(
(I− Π∇,ℓ

K )vh, (I− Π∇,ℓ
K )wh

)
.

We have that the bilinear forms Mh,K
T (·, ·) and Ah,KT (·, ·) satisfy the classical ℓ-consistency and

stability properties (analogous to Proposition (5.3.1)). For further details, see [27, 28, 65].
To approximate of bilinear form CK(·, ·), we set

Ch,K(wh, ϕh) :=

∫
K

gΠℓ−1
K wh ·Πk−1

K curl ϕh ∀wh ∈ Hh
ℓ (K), ∀ϕh ∈ Wh

k(K).

Now, for each φh ∈ Wh
k(K) and wh, vh ∈ Hh

ℓ (K), we consider the following discrete trilinear
form

Bh,K
T (φh; vh, wh) :=

∫
K

(
Πk−1
K curl φh ·Πℓ−1

K ∇vh
)
Πℓ−1
K wh.

Then, for the skew-symmetric trilinear form BK
skew(·; ·, ·) (cf. (5.2.12)), we set the following

approximation:

Bh,K
skew(φh; vh, wh) :=

1

2
(Bh,K

T (φh; vh, wh)−Bh,K
T (φh;wh, vh)).

For the treatment of the right-hand side associated to the temperature discretization, we
set following local load term

F h,K
θ (vh) :=

∫
K

Πℓ−1
K fθ(t)vh ≡

∫
K

fθ(t)Π
ℓ−1
K vh ∀vh ∈ Hh

ℓ (K) for a.e. t ∈ (0, T ).
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Thus, for all ζh, φh, ϕh ∈ Wh
k , we de�ne the associated global forms Mh

F , A
h
F , B

h
F , and F

h
ψ in

the usual way, by summing the local forms on all mesh elements. Analogously, we de�ne the
associated global forms Mh

T , C
h, Bh

skew, F
h
θ for all vh, wh ∈ Hh

ℓ . For instance

Mh
F : Wh

k ×Wh
k → R, Mh

F (φh, ϕh) :=
∑
K∈Th

Mh,K
F (φh, ϕh).

We recall that the forms de�ned above are computable using the degrees of freedom. In
addition, we have that the trilinear forms are immediately extendable to the whole continuous
spaces.

In next result we summarize some properties of the discrete global forms de�ned above.

Lemma 5.3.3. For each ζh, φh, ϕh ∈ Wh
k and each vh, wh ∈ Hh

ℓ , the global forms de�ned above
satisfy the following properties:

|Mh
F (φh, ϕh)| ≤ ĈMF

∥φh∥1,Ω∥ϕh∥1,Ω and Mh
F (ϕh, ϕh) ≥ α̂MF

∥ϕh∥21,Ω,
|Mh

T (vh, wh)| ≤ ĈMT
∥vh∥0,Ω∥wh∥0,Ω and Mh

T (vh, vh) ≥ α̂MT
∥vh∥20,Ω,

|AhF (φh, ϕh)| ≤ ĈAF ∥φh∥2,Ω∥ϕh∥2,Ω and AhF (ϕh, ϕh) ≥ α̂AF ∥ϕh∥22,Ω,
|AhT (vh, wh)| ≤ ĈAT ∥vh∥1,Ω∥wh∥1,Ω and AhT (vh, vh) ≥ α̂AT ∥vh∥21,Ω,

|Bh
F (ζh;φh, ϕh)| ≤ ĈBF ∥ζh∥2,Ω∥φh∥2,Ω∥ϕh∥2,Ω and Bh

F (ζh;ϕh, ϕh) = 0,

|Bh
skew(ζh; vh, wh)| ≤ ĈBT ∥ζh∥2,Ω∥vh∥1,Ω∥wh∥1,Ω and Bh

skew(ζh; vh, vh) = 0,

|Ch(vh, ϕh)| ≤ ∥g∥∞,Ω∥vh∥0,Ω∥ϕh∥1,Ω,
|F h
ψ (ϕh)| ≤ ĈFψ∥fψ∥0,Ω∥ϕh∥1,Ω and |F h

θ (vh)| ≤ ĈFθ∥fθ∥0,Ω∥vh∥0,Ω,

where all the constants involved are positive and independent of mesh size h.

We close this section with the following remarks.

Remark 5.3.2. We can propose an alternative discretization inspired by (5.2.15), which is
given by:

AhF (φh, ϕh) :=
∑
K∈Th

∫
K

∆Πk,D
K φh ∆Πk,D

K ϕh + sDK
(
(I− Πk,D

K )φh, (I− Πk,D
K )ϕh

)
,

for all φh, ϕh ∈ Wh
k , which is also fully computable by using the degrees of freedom DW1−DW5.

Nevertheless, in the present work we will stick to the choice (5.3.8).

Remark 5.3.3. If fψ is given as an explicit function, then we can consider the following alter-
native discrete load term

F h
ψ (ϕh) :=

∑
K∈Th

∫
K

rot fψ(t)Π
k−2
K ϕh ∀ϕh ∈ Wh

k ,

which is also computable using the degrees of freedom DW1−DW5.
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5.4 Fully-discrete formulation and its well posedness

In order to present a full discretization of problem (5.2.13) we introduce a sequence of time
steps tn = n∆t, n = 0, 1, 2, . . . , N , where ∆t = T/N is the time step. Moreover, we consider
the following approximations at each time tn: ψ

n
h ≈ ψh(tn) and θ

n
h ≈ θh(tn). For the external

forces, we introduce the following notation: fnψ := fψ(tn), f
n
θ := fθ(tn) and gn := g(tn).

We consider the backward Euler method coupled with the VE discretization presented in
Section 5.3, which read as follows: given (ψ0

h, θ
0
h), �nd {(ψnh , θnh)}Nn=1 ∈ Wh

k × Hh
ℓ , such that

Mh
F

(
ψnh − ψn−1

h

∆t
, ϕh

)
+ νAhF (ψ

n
h , ϕh) +Bh

F (ψ
n
h ;ψ

n
h , ϕh)− Ch(θnh , ϕh) = F h

ψ (ϕh),

Mh
T

(
θnh − θn−1

h

∆t
, vh

)
+ κAhT (θ

n
h , vh) +Bh

skew(ψ
n
h ; θ

n
h , vh) = F h

θ (vh),

(5.4.1)

for all (ϕh, vh) ∈ Wh
k×Hh

ℓ . The functions (ψ
0
h, θ

0
h) are initial approximations of (ψh, θh) at t = 0.

For instance, we will consider ψ0
h := Shψ0 (see (5.5.1) below) and θ

0
h := Phθ0, with Ph(·) being

the energy operator associated to the H1-inner product (for further details, see for instance
[153, Equation (9)]). We now recall local inverse inequalities for the virtual spaces Wh

k(K) and
Hh
ℓ (K) (see [37, 74]), for all ϕh ∈ Wh

k(K) and for all vh ∈ Hh
ℓ (K), we have

|ϕh|2,K ≤ Cinvh
−1
K |ϕh|1,K and |vh|1,K ≤ Cinvh

−1
K ∥vh∥0,K . (5.4.2)

In what follows, we will provide the well-posedness of the fully-discrete formulation (5.4.1).

Theorem 5.4.1. Let α̂ := min {α̂MF
, α̂MT

} and γ := min {α̂AF ν, α̂ATκ}, where α̂MF
, α̂MT

, α̂AF
and α̂AT are the constants in Lemma 5.3.3. Assume that

α̂ +∆t (γ − Cg) > 0, (5.4.3)

where Cg := ∥g∥L∞(0,T ;L∞(Ω)). Then the fully-discrete scheme (5.4.1) admits at least one solution
(ψnh , θ

n
h) ∈ Wh

k × Hh
ℓ at every time step tn, with n = 1, . . . , N .

Proof. For simplicity we set Xh
k,ℓ := Wh

k × Hh
ℓ and we endow this space with the following

equivalent norm:

|||(ϕh, wh)||| := (∥ϕh∥21,Ω + ∥wh∥20,Ω)
1
2 ∀(ϕh, wh) ∈ Xh

k,ℓ.

Next, for 1 ≤ n ≤ N , let (ψn−1
h , θn−1

h ) ∈ Xh
k,ℓ. Thus, for any (ψh, θh) ∈ Xh

k,ℓ, we consider the

operator Φ : Xh
k,ℓ → (Xh

k,ℓ)
∗ de�ned by

⟨Φ(ψh, θh), (ϕh, wh)⟩ :=Mh
F (ψh, ϕh)−Mh

F (ψ
n−1
h , ϕh) + ν∆tAhF (ψh, ϕh)

+ ∆tBh
F (ψh;ψh, ϕh)−∆tF h

ψ (ϕh) +Mh
T (θh, wh)−Mh

T (θ
n−1
h , wh) + κ∆tAhT (θh, wh)

+ ∆tBh
skew(ψh; θh, wh)−∆tF h

θ (wh)−∆tCh(θh, ϕh) ∀(ϕh, wh) ∈ Xh
k,ℓ.

(5.4.4)

From the de�nition of operator Φ, we observe that for each 1 ≤ n ≤ N a solution (ψnh , θ
n
h) ∈

Xh
k,ℓ of problem (5.4.1) is characterized by Φ(ψnh , θ

n
h) = 0. Thus, we will prove that this operator

satis�es the hypothesis of the �xed point result [103, Chap. IV, Corollary 1.1].
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First we will prove its continuity. Indeed, by using of operator Φ and Lemma 5.3.3, for all
(ϕh, wh) ∈ Xh

k,ℓ have

⟨Φ(ψh, θh)− Φ(ψ⋆h, θ
⋆
h), (ϕh, wh)⟩ :=Mh

F (ψh − ψ⋆h, ϕh) + ν∆tAhF (ψh − ψ⋆h, ϕh)

+ ∆t(Bh
F (ψh;ψh, ϕh)−Bh

F (ψ
⋆
h;ψ

⋆
h, ϕh))

+Mh
T (θh − θ⋆h, wh) + κ∆tAhT (θh − θ⋆h, wh)

+ ∆t(Bh
skew(ψh; θh, wh)−Bh

skew(ψ
⋆
h; θ

⋆
h, wh)) + ∆tCh(θ⋆h − θh, ϕh)

≤ ĈMF
∥ψh − ψ⋆h∥1,Ω∥ϕh∥1,Ω + ν∆tĈAF ∥ψh − ψ⋆h∥2,Ω∥ϕh∥2,Ω

+∆t(Bh
F (ψh;ψh, ϕh)−Bh

F (ψ
⋆
h;ψ

⋆
h, ϕh))

+ ĈMT
∥θh − θ⋆h∥0,Ω∥wh∥0,Ω + κ∆tĈAT ∥θh − θ⋆h∥1,Ω∥wh∥1,Ω

+∆t(Bh
skew(ψh; θh, wh)−Bh

skew(ψ
⋆
h; θ

⋆
h, wh)) + ∆t∥g∥∞,Ω∥θh − θ⋆h∥0,Ω∥ϕh∥1,Ω.

(5.4.5)

Now, we add and subtract the term Bh
F (ψ

⋆
h;ψh, ϕh), then by using the linearity in each entry

and the continuity of the trilinear form Bh
F (·; ·, ·) (cf. Lemma 5.3.3), we obtain

Bh
F (ψh;ψh, ϕh)−Bh

F (ψ
⋆
h;ψ

⋆
h, ϕh) = Bh

F (ψh − ψ⋆h;ψh, ϕh) +Bh
F (ψ

⋆
h;ψh − ψ⋆h, ϕh)

≤ ĈBF (∥ψh − ψ⋆h∥2,Ω∥ψh∥2,Ω + ∥ψ⋆h∥2,Ω∥ψh − ψ⋆h∥2,Ω)∥ϕh∥2,Ω.

Following analogous steps, we get

Bh
skew(ψh; θh, wh)−Bh

skew(ψ
⋆
h; θ

⋆
h, wh) = Bh

skew(ψh − ψ⋆h; θh, wh) +Bh
skew(ψ

⋆
h; θh − θ⋆h, wh)

≤ ĈBT (∥ψh − ψ⋆h∥2,Ω∥θh∥1,Ω + ∥ψ⋆h∥2,Ω∥θh − θ⋆h∥1,Ω)∥wh∥1,Ω.

By combining (5.4.5), the above estimates, the inverse inequalities (5.4.2) and the Cauchy-
Schwarz inequality, for all (ϕh, wh) ∈ Xh

k,ℓ, it holds

|⟨Φ(ψh, θh)−Φ(ψ⋆h, θ
⋆
h), (ϕh, wh)⟩| ≤ C(1 +∆th−2

min +∆th−3
min)|||(ψh−ψ⋆h, θh− θ⋆h)||| |||(ϕh, wh)|||.

Therefore, we deduce that for h and ∆t �xed

∥Φ(ψh, θh)− Φ(ψ⋆h, θ
⋆
h)∥(Xhk,ℓ)∗ −→ 0, when (ψh, θh)

|||·|||−−→ (ψ⋆h, θ
⋆
h),

i.e., Φ is continuous.

On the other hand, by employing again Lemma 5.3.3 and the Young inequality, for all
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(ψh, θh) ∈ Xh
k,ℓ, we obtain

⟨Φ(ψh, θh), (ψh, θh)⟩ ≥ α̂MF
∥ψh∥21,Ω −

Ĉ2
MF

2α̂MF

∥ψn−1
h ∥21,Ω − α̂MF

2
∥ψh∥21,Ω

+ α̂AF ν∆t∥ψh∥22,Ω −
Ĉ2
Fψ
∆t

2α̂AF ν
∥fnψ∥20,Ω − α̂AF ν∆t

2
∥ψh∥22,Ω + α̂MT

∥θh∥20,Ω

−
Ĉ2
MT

2α̂MT

∥θn−1
h ∥20,Ω − α̂MT

2
∥θh∥20,Ω + α̂ATκ∆t∥θh∥21,Ω

−
Ĉ2
Fθ
∆t

2α̂ATκ
∥fnθ ∥20,Ω − α̂ATκ∆t

2
∥θh∥21,Ω − ∆tCg

2
(∥ψh∥21,Ω + ∥θh∥20,Ω)

≥ 1

2
min {α̂MF

, α̂MT
} (∥ψh∥21,Ω + ∥θh∥20,Ω)

+
∆t

2
min {α̂AF ν, α̂ATκ} (∥ψh∥22,Ω + ∥θh∥21,Ω)

− ∆tCg

2
(∥ψh∥21,Ω + ∥θh∥20,Ω)−

Ĉ2
MF

2α̂MF

∥ψn−1
h ∥21,Ω −

Ĉ2
MT

2α̂MT

∥θn−1
h ∥20,Ω

−
Ĉ2
Fψ
∆t

2α̂AF ν
∥fnψ∥20,Ω −

Ĉ2
Fθ
∆t

2α̂ATκ
∥fnθ ∥20,Ω

≥ 1

2
(α̂ +∆t (γ − Cg)) (∥ψh∥21,Ω + ∥θh∥20,Ω)−

Ĉ2
MF

2α̂MF

∥ψn−1
h ∥21,Ω −

Ĉ2
MT

2α̂MT

∥θn−1
h ∥20,Ω

−
Ĉ2
Fψ
∆t

2α̂AF ν
∥fnψ∥20,Ω −

Ĉ2
Fθ
∆t

2α̂ATκ
∥fnθ ∥20,Ω,

where we have used the facts that ∥ψh∥1,Ω ≤ ∥ψh∥2,Ω, ∥θh∥0,Ω ≤ ∥θh∥1,Ω and

∆t

2
min {α̂AF ν, α̂ATκ} (∥ψh∥22,Ω + ∥θh∥21,Ω) ≥ 0.

Thus, from assumption (5.4.3), we can set

ρ := (α̂ +∆t (γ − Cg))
− 1

2

(
Ĉ2
MF

α̂MF

∥ψn−1
h ∥21,Ω +

Ĉ2
MT

α̂MT

∥θn−1
h ∥20,Ω +

Ĉ2
Fψ
∆t

α̂AF ν
∥fnψ∥20,Ω +

Ĉ2
Fθ
∆t

α̂ATκ
∥fnθ ∥20,Ω

) 1
2

and S :=
{
(φh, wh) ∈ Xh

k,ℓ : |||(φh, wh)||| ≤ ρ
}
. Then, we have that

⟨Φ(ψh, θh), (ψh, θh)⟩ ≥ 0 for any (ψh, θh) ∈ ∂S.

Then, by employing the �xed point Theorem [103, Chap. IV, Corollary 1.1], there exists
(ψnh , θ

n
h) ∈ S, such that Φ(ψnh , θ

n
h) = 0, i.e., the fully-discrete problem (5.4.1) admits at least

one solution (ψnh , θ
n
h) ∈ S at every time step tn.

Remark 5.4.1. From assumption (5.4.3) it follows that if Cg ≤ γ then the condition (5.4.3) is
always satis�ed. Instead, if Cg > γ, that is when the buoyancy term is strong when compared
to the di�usion terms, a �small time step condition� ∆t < α̂/(Cg − γ) is needed in order to
guarantee the existence of a discrete solution.
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The following result establishes that the fully-discrete scheme (5.4.1) is unconditionally
stable.

Theorem 5.4.2. Assume that fψ ∈ L2(0, T ;L2(Ω)), fθ ∈ L2(0, T ; L2(Ω)), g ∈ L∞(0, T ;L∞(Ω)).
Moreover, suppose that the initial data satisfy ψ0 ∈ H2

0(Ω) and θ0 ∈ H1
0(Ω). Then, the fully-

discrete scheme (5.4.1) is unconditionally stable and satisfy the following estimate for any
0 < m ≤ N

∥(ψmh , θmh )∥H1(Ω)×L2(Ω) +
(
∆t

m∑
n=1

∥(ψnh , θnh)∥2H2(Ω)×H1(Ω)

) 1
2

≤ C
((

∆t
m∑
n=1

∥(fnψ , fnθ )∥2L2(Ω)×L2(Ω)

) 1
2
+ ∥(ψ0, θ0)∥H2(Ω)×H1(Ω)

)
=: δ,

where C > 0 is independent of h and ∆t.

Proof. Let (ψnh , θ
n
h) ∈ Wh

k ×Hh
ℓ be a solution of fully-discrete problem (5.4.1). We consider the

following equivalent norms:

|||ϕh|||F,h := (Mh
F (ϕh, ϕh))

1/2, |||vh|||T,h := (Mh
T (vh, vh))

1/2 ϕh ∈ Wh
k , ∀vh ∈ Hh

ℓ . (5.4.6)

Taking vh = θnh ∈ Hh
ℓ in the second equation of (5.4.1), using Lemma 5.3.3, the Young

inequality and some identities of real numbers, we obtain

1

2∆t
(|||θnh |||2T,h − |||θn−1

h |||2T,h) + α̂ATκ∥θnh∥21,Ω ≤ C∥fnθ ∥20,Ω +
1

2
α̂ATκ∥θnh∥21,Ω.

Then, multiplying by 2∆t, using the equivalence of norms and summing for n = 1, . . . ,m,
we have that

∥θmh ∥20,Ω +∆t
m∑
n=1

∥θnh∥21,Ω ≤ C
(
∆t

m∑
n=1

∥fnθ ∥20,Ω + ∥θ0h∥20,Ω
)
. (5.4.7)

Analogously, taking ϕh = ψnh ∈ Wh
k in the �rst equation of (5.4.1) and repeating the same

arguments, we obtain

|||ψnh |||2F,h − |||ψn−1
h |||2F,h + α̂AF ν∆t∥ψnh∥22,Ω ≤ C∆tCg∥θnh∥20,Ω + C∆t∥fnψ∥20,Ω, (5.4.8)

where the constant Cg is de�ned in Theorem 5.4.1.
Now, summing for n = 1, . . . ,m, inserting (5.4.7) in (5.4.8) and using the equivalence of

norms and, we get

∥ψmh ∥21,Ω +∆t
m∑
n=1

∥ψnh∥22,Ω ≤ C
(
∆t

m∑
n=1

(
∥fnψ∥20,Ω + ∥fnθ ∥20,Ω

)
+ ∥ψ0

h∥21,Ω + ∥θ0h∥20,Ω
)
, (5.4.9)

where the constant Cg was included in the constant C to shorten the bound.
Finally, the desired result follows adding (5.4.7) and (5.4.9).

The following result establishes that the solution of scheme (5.4.1) is unique for small values
of ∆t.
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Theorem 5.4.3. Let α̂MF
, α̂MT

, ĈBF and ĈBT be the constants in Lemma 5.3.3. Moreover, let
δ be the upper bound in Theorem 5.4.2, Cg be the constant de�ned in Theorem 5.4.1 and Cinv

be the constant in (5.4.2). Assume that

∆t < min{α̂MF
, α̂MT

}min

{
h2min

2C2
inv(ĈBF + ĈBT )δ

,
1

2Cg

}
. (5.4.10)

Then, for each n = 1, . . . , N the solution of the fully-discrete scheme (5.4.1) is unique.

Proof. Let 1 ≤ n ≤ N and (ψnh1, θ
n
h1), (ψ

n
h2, θ

n
h2) ∈ Wh

k ×Hh
ℓ be two solutions of problem (5.4.1).

Then, setting ψ̃nh := ψnh1 − ψnh2, θ̃
n
h := θnh1 − θnh2 and using the de�nition of operator (5.4.4), for

all (ϕh, vh) ∈ Wh
k × Hh

ℓ , we have that

Mh
F (ψ̃

n
h , ϕh) +Mh

T (θ̃
n
h , vh) + ν∆tAhF (ψ̃

n
h , ϕh) + κ∆tAhT (θ̃

n
h , vh)−∆tCh(θ̃nh , ϕh)

+ ∆t(Bh
F (ψ

n
h1;ψ

n
h1, ϕh)−Bh

F (ψ
n
h2;ψ

n
h2, ϕh))

+ ∆t(Bh
skew(ψ

n
h1; θ

n
h1, vh)−Bh

skew(ψ
n
h2; θ

n
h2, vh)) = 0.

(5.4.11)

Adding and subtracting Bh
F (ψ

n
h2;ψ

n
h1, ϕh) and B

h
skew(ψ

n
h2; θ

n
h1, vh) we obtain

Bh
F (ψ

n
h1;ψ

n
h1, ϕh)−Bh

F (ψ
n
h2;ψ

n
h2, ϕh) = Bh

F (ψ̃
n
h ;ψ

n
h1, ϕh) +Bh

F (ψ
n
h2; ψ̃

n
h , ϕh)

Bh
skew(ψ

n
h1; θ

n
h1, vh)−Bh

skew(ψ
n
h2; θ

n
h2, vh) = Bh

skew(ψ̃
n
h ; θ

n
h1, vh) +Bh

skew(ψ
n
h2; θ̃

n
h , vh).

Next, taking ϕh = ψ̃nh and vh = θ̃nh in (5.4.11), from the above identities, the skew-symmetry
of trilinear forms, the continuity and coercivity properties of the multilinear forms involved (cf.
Lemma 5.3.3), it follows

α̂MF
∥ψ̃nh∥

2
1,Ω + α̂MT

∥θ̃nh∥
2
0,Ω + α̂AF ν∆t∥ψ̃nh∥

2
2,Ω + α̂ATκ∆t∥θ̃nh∥

2
1,Ω

≤ ∆tĈBF ∥ψ̃nh∥2,Ω∥ψ
n
h1∥2,Ω∥ψ̃nh∥2,Ω +∆tĈBT ∥ψ̃nh∥2,Ω∥θ

n
h1∥1,Ω∥θ̃nh∥1,Ω +∆tCg∥θ̃nh∥0,Ω∥ψ̃nh∥1,Ω

≤ ∆t
(
ĈBF ∥ψnh1∥2,Ω + ĈBT ∥θnh1∥1,Ω

)
∥(ψ̃nh , θ̃nh)∥

2
H2(Ω)×H1(Ω) +∆tCg∥(ψ̃nh , θ̃nh)∥

2
H1(Ω)×L2(Ω).

Now, employing local inverse inequalities (5.4.2) in the above estimate and Theorem 5.4.2,
we get

min{α̂MF
, α̂MF

}∥(ψ̃nh , θ̃nh)∥
2
H1(Ω)×L2(Ω)

≤
[
Cinvh

−1
min∆t

(
(ĈBF + ĈBT )Cinvh

−1
minδ

)
+∆tCg

]
∥(ψ̃nh , θ̃nh)∥

2
H1(Ω)×L2(Ω).

From the assumption (5.4.10), we have that

1

min{α̂MF
, α̂MF

}
(
Cinvh

−1
min(ĈBF + ĈBT )Cinvh

−1
minδ + Cg

)
< 1. (5.4.12)

Thus, ψ̃nh = 0 and θ̃nh = 0, which implies ψnh1 = ψnh2 and θ
n
h1 = θnh2. The proof is complete.

Remark 5.4.2. Exploiting the fact that we are in the two dimensional case and using sharper
Sobolev bounds for the convective terms (i.e., employing the Hölder inequality, Sobolev bounds
with adequate exponents and an inverse inequality), we could get a power h−ϵmin, for all ϵ > 0,
instead of h−1

min in the term h−1
minδ (see equation (5.4.12)).
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5.5 Convergence analysis

This section is devoted to the convergence analysis of the fully-discrete formulation (5.4.1)
introduced in the previous section. We start recalling some preliminary results of approximation
in the polynomial and virtual spaces. Moreover, we introduce an energy operator associated
to the H2-inner product with its corresponding approximation properties. Later on, we state
technical results, which will be useful to provide the convergence result of our fully-discrete
virtual scheme.

5.5.1 Preliminary results

First, we recall the following polynomial approximation result (see for instance [54]). Here
below E represents as usual a generic element of {Ωh}h>0, which we recall satis�es assumptions
A1, A2 in Section 5.3.1.

Proposition 5.5.1. Let m ∈ R and n ∈ N ∪ {0}. Then, for each ϕ ∈ Hm(K), there exist
ϕπ ∈ Pn(K), and C > 0 independent of hK, such that

∥ϕ− ϕπ∥t,K ≤ Chm−t
K |ϕ|m,K , 0 ≤ m ≤ n+ 1, t = 0, . . . , [m],

with [m] denoting the largest integer equal or smaller than m.

Standard arguments and (5.3.5) lead easily to following approximation properties for the
projectors Πn

K (an analogous result can be obtained the vectorial version).

Proposition 5.5.2. Let m ∈ R, n ∈ N ∪ {0} and let Πn
K be the projection de�ned in (2.3.5).

Then, for each ϕ ∈ Hm(K), there exists a constant C, independent of K and hK, such that

∥ϕ− Πn
Kϕ∥t,K ≤ Chm−t

K |ϕ|m,K , 0 ≤ m ≤ n+ 1, t = 0, . . . , [m],

with [m] denoting the largest integer equal or smaller than m.

Now, we continue with the following approximation for the stream-function and temperature
virtual element spaces, which can be found in [105, 38, 58] and [134, 65, 28], respectively.

Proposition 5.5.3. Let m ∈ R. Then, for each ϕ ∈ Hm(Ω), there exist ϕI ∈ Wh
k and CI > 0,

independent of h, such that

∥ϕ− ϕI∥t,Ω ≤ CIh
m−t|ϕ|m,Ω, t = 0, 1, 2, 2 < m ≤ k + 1, k ≥ 2.

For the temperature variable, we present local and global approximation properties.

Proposition 5.5.4. Let m ∈ R. Then, for each v ∈ Hm(Ω), there exist vI ∈ Hh
ℓ and CI > 0,

independent of h, such that

∥v − vI∥t,K ≤ CIh
m−t
K |v|m,K ∀K ∈ Th; ∥v − vI∥t,Ω ≤ CIh

m−t|v|m,Ω,

with t = 0, 1, 1 < m ≤ ℓ+ 1, ℓ ≥ 1.
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Now, we will introduce the following discrete biharmonic projection associated with the
stream-function discretization. For each φ ∈ H2

0(Ω), we consider the operator Sh : H2
0(Ω) → Wh

k ,
de�ned as the solution of problem:

AhF (Shφ, ϕh) = AF (φ, ϕh) ∀ϕh ∈ Wh
k , (5.5.1)

where AF (·, ·) was de�ned in (5.2.5) and we recall that AhF (·, ·) is the global version of the
form de�ned in (5.3.8). By using the ellipticity and continuity of the bilinear form AhF (·, ·)
(cf. Lemma 5.3.3) and the Lax-Milgram Lemma, we have that the above problem (5.5.1) is
well-posed.

By using Propositions 5.3.1, 5.5.1 and 5.5.3, the following approximation result for the
energy projection Sh(·) holds true (see [3, Lemma 5.3]).

Proposition 5.5.5. For each φ ∈ H2
0(Ω), there exists a unique function Shφ ∈ Wh

k satisfying
(5.5.1). Moreover, if φ ∈ H2+s(Ω), with 1

2
< s ≤ k − 1, then the following approximation

property holds:
∥φ− Shφ∥1,Ω + hs̃∥φ− Shφ∥2,Ω ≤ Chs̃+s|φ|2+s,Ω,

where C is a positive constant, independent of h and s̃ ∈ (1
2
, 1] depends on the largest re-entrant

angle of the domain Ω. In particular, when Ω is a convex domain it holds s̃ = 1.

In what follows, we will establish four technical lemmas involving the trilinear forms asso-
ciated to transport/convection and the bilinear form associated to the buoyancy term; these
results will be useful in subsection 5.5.2.

Lemma 5.5.1. For all ζh;φh, ϕh ∈ Wh
k , there exists ĈBF > 0, independent of h, such that

|Bh
F (ζh;φh, ϕh)| ≤ ĈBF ∥ζh∥2,Ω∥φh∥2,Ω∥ϕh∥

1
2
2,Ω∥ϕh∥

1
2
1,Ω.

Proof. We use the de�nition of the trilinear form Bh
F (·; ·, ·) (cf. (5.3.9)), the Hölder inequality,

the continuity of the operators Πk−2
K andΠk−1

K with respect to the L2- and L4-norms, respectively
(cf. properties (5.3.5)), and the Hölder inequality for sequences, to obtain

Bh
F (ζh;φh, ϕh) ≤

∑
K∈Th

∥Πk−2
K ∆ζh∥0,K∥Πk−1

K curl φh∥L4(K)∥Πk−1
K ∇ϕh∥L4(K)

≤ C∥∆ζh∥0,Ω∥curl φh∥L4(Ω)∥∇ϕh∥L4(Ω)

≤ C∥∆ζh∥0,Ω∥φh∥2,Ω∥∇ϕh∥L4(Ω),

where we have used the Sobolev inclusion H1(Ω) ↪→ L4(Ω). Now, applying the Ladyzhenskaya
inequality (5.2.14) with v = ∇ϕh we obtain the desired result.

Lemma 5.5.2. For all ζ, φ, ϕ ∈ H2
0(Ω), we have that

Bh
F (φ;φ, ϕ)−Bh

F (ζ; ζ, ϕ) = Bh
F (φ;φ− ζ + ϕ, ϕ) +Bh

F (φ− ζ + ϕ; ζ, ϕ)−Bh
F (ϕ; ζ, ϕ).

Proof. The proof follows by adding and subtracting suitable terms, and using the trilineality
and skew-symmetry properties of the form Bh

F (·; ·, ·).

Next lemmas give us the measure of the variational crime in the discretization of the trilinear
forms BF (·; ·, ·) and Bskew(·; ·, ·) and the bilinear form C(·, ·).
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Lemma 5.5.3. Let φ(t) ∈ H2
0(Ω) ∩ H2+s(Ω), with 1

2
< s ≤ k − 1, for almost all t ∈ (0, T ).

Then, there exists C > 0, independent of mesh size h, such that

|BF (φ;φ, ϕh)−Bh
F (φ;φ, ϕh)| ≤ Chs

(
∥φ∥1+s,Ω + ∥φ∥2,Ω

)
∥φ∥2+s,Ω∥ϕh∥2,Ω ∀ϕh ∈ Wh

k .

Proof. The proof has been established in [3, Lemma 5.4].

Lemma 5.5.4. Let 1
2
< γ ≤ min{k − 1, ℓ}. Assume that φ(t) ∈ H2

0(Ω) ∩ H2+γ(Ω) and v(t) ∈
H1

0(Ω)∩H1+γ(Ω), for almost all t ∈ (0, T ). Then, there exists C > 0, independent of mesh size
h, such that, a.e. t ∈ (0, T ),

|Bskew(φ; v, wh)−Bh
skew(φ; v, wh)| ≤ Chγ∥φ∥1+γ,Ω∥v∥1+γ,Ω∥wh∥1,Ω ∀wh ∈ Hh

ℓ . (5.5.2)

Moreover, assume that g(t) ∈ Hγ(Ω) ∩ L∞(Ω), for almost all t ∈ (0, T ). Then, a.e. t ∈ (0, T ),

|C(v, ϕh)− Ch(v, ϕh)| ≤ Chγ max{∥g∥γ,Ω, ∥g∥∞,Ω}∥v∥1+γ,Ω∥ϕh∥1,Ω ∀ϕh ∈ Wh
k . (5.5.3)

Proof. To prove estimate (5.5.2), we split the consistency error as

Bskew(φ; v, wh)−Bh
skew(φ; v, wh) =

1

2
(β1(wh) + β2(wh)) , (5.5.4)

where

β1(wh) :=
∑
K∈Th

(
BK
T (φ; v, wh)−Bh,K

T (φ; v, wh)
)
,

β2(wh) :=
∑
K∈Th

(
BK
T (φ;wh, v)−Bh,K

T (φ;wh, v)
)
.

In what follows, we will establish bounds for the terms β1(wh) and β2(wh). Indeed, for the
term β1(wh) we have

β1(wh) =
∑
K∈Th

∫
K

(curl φ · ∇v)wh −
∫
K

(Πk−1
K curl φ ·Πℓ−1

K ∇v)Πℓ−1
K wh

=
∑
K∈Th

∫
K

(curl φ · ∇v)(wh − Πℓ−1
K wh) +

∑
K∈Th

∫
K

(
curl φ · (∇v −Πℓ−1

K ∇v)
)
Πℓ−1
K wh

+
∑
K∈Th

∫
K

(
(curl φ−Πk−1

K curl φ) ·Πℓ−1
K ∇v

)
Πℓ−1
K wh

=: T1 + T2 + T3.

(5.5.5)

In order to bound the terms T1, �rst we consider the case 1/2 < γ ≤ 1. Then, by using
approximation property of Πℓ−1

K and the Hölder inequality, it follows

T1 ≤
∑
K∈Th

∥curl φ∥L4(K)∥∇v∥L4(K)∥wh − Πℓ−1
K wh∥0,K

≤ C
∑
K∈Th

∥curl φ∥L4(K)∥∇v∥L4(K)hK |wh|1,K

≤ Chγ∥φ∥1+γ,Ω∥v∥1+γ,Ω∥wh∥1,Ω.
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On the other hand, for the case 1 < γ ≤ ℓ, we use orthogonality property of Πℓ−1
K , the

Hölder inequality (for sequences), to obtain

T1 =
∑
K∈Th

∫
K

(curl φ · ∇v − Πℓ−1
K (curl φ · ∇v))(wh − Πℓ−1

K wh).

Now, we apply [26, Theorem 7.4], with s = γ − 1, s1 = s2 = γ and p = p1 = p2 = 2 to obtain
curl φ · ∇v ∈ Hγ−1(Ω) and |curl φ · ∇v|γ−1,Ω ≤ C∥φ∥1+γ,Ω∥v∥1+γ,Ω.

Thus, by using Proposition 5.5.2 and the above facts, we arrive

T1 ≤ Chγ−1|curl φ · ∇v|γ−1,Ωh∥wh∥1,Ω ≤ Chγ∥φ∥1+γ,Ω∥v∥1+γ,Ω∥wh∥1,Ω.

Collecting the above inequalities, for 1
2
< γ ≤ ℓ, we have

T1 ≤ Chγ∥φ∥1+γ,Ω∥v∥1+γ,Ω∥wh∥1,Ω. (5.5.6)

Now, for the term T2 we proceed as follows. First, we apply the Hölder inequality, then
by using stability and approximation properties of the L2-projectors (cf. properties (5.3.5) and
Proposition 5.5.2), Sobolev embedding and the Hölder inequality for sequences, we get

T2 ≤
∑
K∈Th

∥curl φ∥L4(K)∥∇v −Πℓ−1
K ∇v∥0,K∥Πℓ−1

K wh∥L4(K)

≤ Chγ∥φ∥1+γ,Ω∥v∥1+γ,Ω∥wh∥1,Ω.
(5.5.7)

For the term T3, we follow similar arguments, to obtain

T3 ≤ Chγ∥φ∥1+γ,Ω∥v∥1+γ,Ω∥wh∥1,Ω. (5.5.8)

From the bounds (5.5.5), (5.5.6), (5.5.7) and (5.5.8), we conclude that

β1(wh) ≤ Chγ∥φ∥1+γ,Ω∥v∥1+γ,Ω∥wh∥1,Ω. (5.5.9)

Now, we will focus on the term β2(wh). To estimate this term, �rst we add and subtract suitable
expressions to obtain

β2(wh) =
∑
K∈Th

∫
K

(curl φ · ∇wh)v −
∫
K

(Πk−1
K curl φ ·Πℓ−1

K ∇wh)Πℓ−1
K v

=
∑
K∈Th

∫
K

v(curl φ) · (∇wh −Πℓ−1
K ∇wh)

+
∑
K∈Th

∫
K

(
curl φ−Πk−1

K curl φ
)
· vΠℓ−1

K ∇wh

+
∑
K∈Th

∫
K

(
Πk−1
K curl φ ·Πℓ−1

K ∇wh
)
(v − Πℓ−1

K v)

=: I1 + I2 + I3.

Applying orthogonality and approximation properties of Πℓ−1
K , we have

I1 =
∑
K∈Th

∫
K

(v(curl φ)−Πℓ−1
K (v(curl φ))) · (∇wh −Πℓ−1

K ∇wh)

≤ C
∑
K∈Th

hγK |v(curl φ)|γ,K |wh|1,K ≤ Chγ|v(curl φ)|γ,Ω∥wh∥1,Ω.
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Then, applying again [26, Theorem 7.4], now with s = γ, s1 = γ + 1, s2 = γ and p = p1 =
p2 = 2, we get

|v(curl φ)|γ,Ω ≤ C∥v∥1+γ,Ω∥φ∥1+γ,Ω.

From the two bounds above, we obtain

I1 ≤ Chγ∥φ∥1+γ,Ω∥v∥1+γ,Ω∥wh∥1,Ω.

The terms I2 and I3 can be estimated using similar arguments. We conclude that

β2(wh) ≤ Chγ∥φ∥2+γ,Ω∥v∥1+γ,Ω∥wh∥1,Ω. (5.5.10)

The proof of (5.5.2) follows from (5.5.4), (5.5.9) and (5.5.10).
Next, we will prove property (5.5.3). Let ϕh ∈ Wh

k , then adding and subtracting the term
gv · Πk−1

K curl ϕh and by using orthogonality, stability and approximations properties of the
L2-projections, we have

C(v, ϕh)− Ch(v, ϕh) =
∑
K∈Th

∫
K

(gv −Πk−1
K (gv)) · (curl ϕh −Πk−1

K curl ϕh)

+

∫
K

g(v − Πℓ−1
K v) ·Πk−1

K curl ϕh

≤ C
∑
K∈Th

(hγK |gv|γ,K∥curl ϕh∥0,K + hγK∥g∥L∞(K)∥v∥γ,K∥curl ϕh∥0,K)

≤ Chγ(∥g∥γ,Ω∥v∥1+γ,Ω∥ϕh∥1,Ω + hγK∥g∥∞,Ω∥v∥γ,Ω∥ϕh∥1,Ω),

where we have used analogous step to those used to bound I1. The proof is complete.

We �nish this subsection recalling a discrete Gronwall inequality, which will be useful to
derive the error estimate of the fully-discrete virtual scheme (5.4.1).

Lemma 5.5.5. Let D ≥ 0, aj, bj, cj and λj be non negative numbers for any integer j ≥ 0,
such that

an +∆t
n∑
j=0

bj ≤ ∆t
n∑
j=0

λjaj +∆t
n∑
j=0

cj +D, n ≥ 0.

Suppose that ∆tλj < 1 for all j, and set σj := (1−∆tλj)
−1. Then, the following bound holds

an +∆t
n∑
j=0

bj ≤ exp
(
∆t

n∑
j=0

σjλj

)(
∆t

n∑
j=0

cj +D
)
.

5.5.2 Error estimates for the fully-discrete scheme

In this subsection we will provide a convergence result for the fully-discrete problem (5.4.1)
under suitable regularity conditions for the exact solution.

We start denoting (ψ(tn), θ(tn)) as (ψ
n, θn) at each time level tn, and splitting the stream-

function error as follows:

ψn − ψnh = (ψn − Shψn)− (ψnh − Shψn) =: ηnψ − φnψ.
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For the temperature variable we will exploit the virtual interpolant presented in Proposi-
tion 5.5.4, to split the error as:

θn − θnh = (θn − θnI )− (θnh − θnI ) =: ηnθ − φnθ ,

where θnI is the interpolant of θn in the virtual space Hh
ℓ .

Error estimates for the terms ηnθ and ηnψ are given by Propositions 5.5.4 and 5.5.5, respec-
tively. Therefore, we will focus on the terms φnψ and φnθ .

We start establishing error equations of the momentum and energy identities. Indeed,
by using the fully-discrete scheme (5.4.1), the continuous weak formulation (5.2.13) and the
biharmonic energy projection Sh de�ned in (5.5.1), we have the following error equation for the
momentum identity (where we have taken ϕh = φnψ ∈ Wh

k)

Mh
F

(
φnψ − φn−1

ψ

∆t
, φnψ

)
+ νAhF (φ

n
ψ, φ

n
ψ) =

(
F h
ψ (φ

n
ψ)− Fψ(φ

n
ψ)
)

+
(
BF (ψ

n;ψn, φnψ)−Bh
F (ψ

n
h ;ψ

n
h , φ

n
ψ)
)

+

(
MF (∂tψ

n, φnψ)−Mh
F

(Shψn − Shψn−1

∆t
, φnψ

))
+
(
Ch(θnh , φ

n
ψ)− C(θn, φnψ)

)
=: TF + TB + TM + TC .

(5.5.11)

Analogously, recalling that φnθ = θnh−θnI , and using the de�nition of the continuous and discrete
problems (cf. (5.2.13) and (5.4.1), respectively) for the energy equation, we have that

Mh
T

(
φnθ − φn−1

θ

∆t
, φnθ

)
+ κAhT (φ

n
θ , φ

n
θ ) =

(
F h
θ (φ

n
θ )− Fθ(φ

n
θ )
)

+
(
Bskew(ψ

n; θn, φnθ )−Bh
skew(ψ

n
h ; θ

n
h , φ

n
θ )
)

+

(
MT (∂tθ

n, φnθ )−Mh
T

(θnI − θn−1
I

∆t
, φnθ

))
+ κ

(
AT (θ

n, φnθ )− AhT (θ
n
I , φ

n
θ )
)

=: IF + IB + IM + IA.

(5.5.12)

The next step is to establish error estimates for the momentum and energy equations (5.5.11)
and (5.5.12). The following two lemmas provide such bounds and will be useful to obtain the
convergence result for the fully-discrete problem (5.4.1).

Lemma 5.5.6 (Error estimate for the momentum equation). Suppose that the external forces
satisfy fψ ∈ L∞(0, T ;Hs(Ω)) and g ∈ L∞(0, T ;Hmin{s,r}(Ω) ∩ L∞(Ω)), with 1

2
< s ≤ k − 1 and

1 ≤ r ≤ ℓ. Let (ψn, θn) ∈ H2
0(Ω) × H1

0(Ω) be the solution of problem (5.2.13) at time t = tn.
Moreover, assume that

ψ ∈ L∞(0, T ; H2+s(Ω)), ∂tψ ∈ L1(0, T ; H1+s(Ω)),

∂ttψ ∈ L1(0, T ; H1(Ω)), θ ∈ L∞(0, T ; Hr(Ω)).
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Let (ψnh , θ
n
h) ∈ Wh

k ×Hh
ℓ be the virtual element solution generated by scheme (5.4.1). Then, the

following error estimate holds

1

2∆t

(
|||φnψ|||2F,h − |||φn−1

ψ |||2F,h
)
+
α̂AF ν

2
∥φnψ∥22,Ω

≤ C
[
1 + ν−3

(
∥ηnψ∥42,Ω + ∥ψn∥42,Ω

)]
|||φnψ|||2F,h

+ C
[
ν−1(∥ψn∥22,Ω + ∥ηnψ∥22,Ω)

]
∥ηnψ∥22,Ω + ∥gn∥2∞,Ω(∥ηnθ ∥20,Ω + ∥φnθ∥20,Ω)

+ Ch2s
(
∥fψ∥2L∞(tn−1,tn;Hs(Th)) + ν−1∥ψn∥22+s,Ω

)
+ Ch2min{s,r}max{∥gn∥2min{s,r},Ω, ∥gn∥2∞,Ω}∥θn∥2r,Ω

+ C∥∂ttψ∥L1(tn−1,tn;H1(Ω))|||φnψ|||F,h +
C

∆t
hs∥∂tψ∥L1(tn−1,tn;H1+s(Ω))|||φnψ|||F,h.

(5.5.13)

Proof. We will estimate each terms in (5.5.11). Indeed, by using the de�nition of the functionals
Fψ(·) and F h

ψ (·), the Cauchy-Schwarz and Young inequalities for the term TF holds

TF ≤ C

2c
h2s∥fψ∥2L∞(tn−1,tn;Hs(Th)) +

c

2
∥φnψ∥21,Ω. (5.5.14)

For the term TM , we proceed similarly as in [3, Theorem 5.6] to obtain

TM :=MF (∂tψ
n, φnψ)−Mh

F

(
Shψn − Shψn−1

∆t
, φnψ

)
=MF

(
∂tψ

n − ψn − ψn−1

∆t
, φnψ

)
+
∑
K∈Th

MK
F

(
ψn − ψn−1

∆t
−
(
ΠD
K(ψ

n − ψn−1)

∆t

)
, φnψ

)
+
∑
K∈Th

MK,h
F

((
ΠD
K(ψ

n − ψn−1)

∆t

)
− Shψn − Shψn−1

∆t
, φnψ

)
≤ C∥∂ttψ∥L1(tn−1,tn;H1(Ω))∥φnψ∥1,Ω +

C

∆t
hs∥∂tψ∥L1(tn−1,tn;H1+s(Ω))∥φnψ∥1,Ω.

(5.5.15)

Next, to estimate TC , we add and subtract the term Ch(θn, φnψ) to get

TC := Ch(θnh , φ
n
ψ)− C(θn, φnψ) = Ch(θnh − θn, φnψ) + (Ch(θn, φnψ)− C(θn, φnψ))

= (Ch(φnθ , φ
n
ψ)− Ch(ηnθ , φ

n
ψ)) + (Ch(θn, φnψ)− C(θn, φnψ))

≤ ∥gn∥∞,Ω (∥φnθ∥0,Ω + ∥ηnθ ∥0,Ω) ∥φnψ∥1,Ω
+ Chmin{s,r}max{∥gn∥min{s,r},Ω, ∥gn∥∞,Ω}∥θn∥r,Ω∥φnψ∥1,Ω

≤ C∥gn∥2∞,Ω(∥φnθ∥20,Ω + ∥φnψ∥21,Ω)
+ Ch2min{s,r}max{∥gn∥2min{s,r},Ω, ∥gn∥2∞,Ω}∥θn∥2r,Ω + c∥φnψ∥21,Ω,

(5.5.16)

where we have used the Hölder inequality, bound (5.5.3) (with γ = min{s, r}) and the Young
inequality.

For the term TB, we have

TB := BF (ψ
n;ψn, φnψ)−Bh

F (ψ
n
h ;ψ

n
h , φ

n
ψ) =

(
BF (ψ

n;ψn, φnψ)−Bh
F (ψ

n;ψn, φnψ)
)

+
(
Bh
F (ψ

n;ψn, φnψ)−Bh
F (ψ

n
h ;ψ

n
h , φ

n
ψ)
)
=: TB1 + TB2.

(5.5.17)
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Now, we will bound the terms TB1 and TB2. Indeed, from Lemma 5.5.3 and the Young inequality
we have that

TB1 := BF (ψ
n;ψn, φnψ)−Bh

F (ψ
n;ψn, φnψ)

≤ C hs(∥ψn∥2+s,Ω + ∥ψn∥2,Ω)∥ψn∥2+s,Ω∥φnψ∥2,Ω

≤ 4Cψ
α̂AF ν

h2s∥ψn∥22+s,Ω +
α̂AF ν

8
∥φnψ∥22,Ω

≤ Cψν
−1h2s∥ψn∥22+s,Ω +

α̂AF ν

8
∥φnψ∥22,Ω,

(5.5.18)

where we have included the term (∥ψn∥2+s,Ω + ∥ψn∥2,Ω) in the constant Cψ in order to shorten
the inequality.

On the other hand, to bound the expression TB2, we apply Lemma 5.5.2, recall that φnψ =
ψnh − Shψn and ηnψ = ψn − Shψn, to arrive

TB2 := Bh
F (ψ

n;ψn, φnψ)−Bh
F (ψ

n
h ;ψ

n
h , φ

n
ψ)

= Bh
F (ψ

n;ψn − ψnh + φnψ, φ
n
ψ) +Bh

F (ψ
n − ψnh + φnψ;ψ

n
h , φ

n
ψ)−Bh

F (φ
n
ψ;ψ

n
h , φ

n
ψ)

= Bh
F (ψ

n; ηnψ, φ
n
ψ) +Bh

F (η
n
ψ;ψ

n
h , φ

n
ψ)−Bh

F (φ
n
ψ;ψ

n
h , φ

n
ψ).

(5.5.19)

By using Lemma 5.3.3, together with the Young inequality, we have

Bh
F (ψ

n; ηnψ, φ
n
ψ) ≤

α̂AF ν

8
∥φnψ∥22,Ω + Cν−1∥ψn∥22,Ω∥ηnψ∥22,Ω.

Now, adding and subtracting suitable terms, and employing Lemma 5.3.3 along with the
Young inequality, we obtain

Bh
F (η

n
ψ;ψ

n
h , φ

n
ψ) = Bh

F (η
n
ψ;ψ

n + (ψnh − ψn), φnψ)

= Bh
F (η

n
ψ;ψ

n, φnψ) +Bh
F (η

n
ψ;φ

n
ψ − ηnψ, φ

n
ψ)

= Bh
F (η

n
ψ;ψ

n, φnψ)−Bh
F (η

n
ψ; η

n
ψ, φ

n
ψ)

≤ ĈBF
(
∥ψn∥2,Ω + ∥ηnψ∥2,Ω

)
∥ηnψ∥2,Ω∥φnψ∥2,Ω

≤ α̂AF ν

8
∥φnψ∥22,Ω + Cν−1(∥ψn∥22,Ω + ∥ηnψ∥22,Ω)∥ηnψ∥22,Ω.

Once again adding and subtracting adequate terms, using Lemma 5.5.1 and the Young
inequality, we get

−Bh
F (φ

n
ψ;ψ

n
h , φ

n
ψ) = Bh

F (φ
n
ψ; (ψ

n − ψnh)− ψn, φnψ) = Bh
F (φ

n
ψ; η

n
ψ, φ

n
ψ)−Bh

F (φ
n
ψ;ψ

n, φnψ)

≤ ĈBF ∥φnψ∥2,Ω
(
∥ηnψ∥2,Ω + ∥ψn∥2,Ω

)
∥φnψ∥

1
2
2,Ω∥φ

n
ψ∥

1
2
1,Ω

≤ α̂AF ν

16
∥φnψ∥22,Ω + 2Cν−1

(
∥ηnψ∥22,Ω + ∥ψn∥22,Ω

)
∥φnψ∥2,Ω∥φnψ∥1,Ω

≤ α̂AF ν

16
∥φnψ∥22,Ω + 2ν−2C4ν

−1
(
∥ηnψ∥22,Ω + ∥ψn∥22,Ω

)2 ∥φnψ∥21,Ω +
α̂AF ν

16
∥φnψ∥22,Ω

≤ α̂AF ν

8
∥φnψ∥22,Ω + 4C4ν

−3
(
∥ηnψ∥42,Ω + ∥ψn∥42,Ω

)
∥φnψ∥21,Ω.
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Combining the estimates (5.5.17)-(5.5.19) and the three previous inequalities, we have

TB ≤ C1ν
−1h2s∥ψn∥22+s,Ω∥ψn∥22,Ω +

α̂AF ν

2
∥φnψ∥22,Ω + Cν−1∥ψn∥22,Ω∥ηnψ∥22,Ω

+ Cν−1(∥ψn∥22,Ω + ∥ηnψ∥22,Ω)∥ηnψ∥22,Ω + C4ν
−3
(
∥ηnψ∥42,Ω + ∥ψn∥42,Ω

)
∥φnψ∥21,Ω.

(5.5.20)

Now, from estimates (5.5.11), (5.5.14)-(5.5.16) and (5.5.20), the de�nition and equivalence
of the norm ||| · |||F,h (cf. (5.4.6)), together with the coercivity of bilinear form AhF (·, ·) we obtain
the desired estimate.

Lemma 5.5.7 (Error estimate for the energy equation). Let 1
2
< s ≤ k − 1 and 1 ≤ r ≤ ℓ.

Suppose that fθ ∈ L∞(0, T ; Hr(Ω)). Moreover, let (ψn, θn) ∈ H2
0(Ω) × H1

0(Ω) be the solution of
problem (5.2.13) at time t = tn and assume that

θ ∈ L∞(0, T ; H1+r(Ω) ∩W1
∞(Ω)), ∂tθ ∈ L1(0, T ; Hr(Ω)),

∂ttθ ∈ L1(0, T ; L2(Ω)) and ψ ∈ L∞(0, T ; H2+s(Ω)).

Let (ψnh , θ
n
h) ∈ Wh

k ×Hh
ℓ be the virtual element solution generated by scheme (5.4.1). Then, the

following error estimate holds

1

2∆t

(
|||φnθ |||2T,h − |||φn−1

θ |||2T,h
)
+
α̂ATκ

2
∥φnθ∥21,Ω ≤ C∥φnθ∥20,Ω + κ−1∥θn∥21,Ω∥ηnψ∥22,Ω

+ C
[
κ−1(∥ψn∥22,Ω + ∥ηnψ∥22,Ω)

]
∥ηnθ ∥21,Ω + C|||φnθ |||2T,h

+ Ch2r∥fθ∥2L∞(tn−1,tn;Hr(Th)) + Cκ−1h2min{s,r}∥ψn∥22+s,Ω∥θn∥22+r,Ω

+ C∥∂ttθ∥L1(tn−1,tn;L2(Ω))|||φnθ |||T,h +
C

∆t
hr∥∂tθ∥L1(tn−1,tn;Hr(Ω))|||φnθ |||T,h.

(5.5.21)

Proof. We will establish estimates for each terms in the error equation (5.5.12). We start with
the term IF , which is bounded by using the Cauchy-Schwarz inequality and approximation
properties of projection Πℓ

K , as follows:

IF := F h
θ (φ

n
θ )− Fθ(φ

n
θ ) ≤

C

2c
h2r∥fθ∥2L∞(tn−1,tn;Hr(Th)) +

c

2
∥φnθ∥20,Ω. (5.5.22)

For the term IM , we proceed similarly as in [153, Theorem 3.3] to obtain

IM :=MT (∂tθ
n, φnθ )−Mh

F

(θnI − θn−1
I

∆t
, φnθ

)
≤ C∥∂ttθ∥L1(tn−1,tn;L2(Ω))∥φnθ∥0,Ω +

C

∆t
hr∥∂tθ∥L1(tn−1,tn;Hr(Ω))∥φnθ∥0,Ω.

(5.5.23)

Analogously, as in (5.5.17) we split the term IB as follows:

IB := Bskew(ψ
n; θn, φnθ )−Bh

skew(ψ
n
h ; θ

n
h , φ

n
ψ) =

(
Bskew(ψ

n; θn, φnθ )−Bh
skew(ψ

n; θn, φnθ )
)

+
(
Bh

skew(ψ
n; θn, φnθ )−Bh

skew(ψ
n
h ; θ

n
h , φ

n
θ )
)
=: IB1 + IB2.

(5.5.24)
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Now, applying the bound (5.5.2), with γ = min{s, r} and using the Young inequality, we
obtain

IB1 := Bskew(ψ
n; θn, φnθ )−Bh

skew(ψ
n; θn, φnθ ) ≤ Chmin{s,r}∥ψn∥2+s,Ω∥θn∥1+r,Ω∥φnθ∥1,Ω

≤ Cκ−1h2min{s,r}∥ψn∥22+s,Ω∥θn∥21+r,Ω +
α̂ATκ

10
∥φnθ∥21,Ω.

(5.5.25)

On the other hand, similarly as in (5.5.19) and (5.5.20), we can derive

IB2 = Bh
skew(ψ

n; ηnθ , φ
n
θ ) +Bh

skew(η
n
ψ; θ

n
h , φ

n
θ )−Bh

skew(φ
n
ψ; θ

n
h , φ

n
θ )

≤ α̂ATκ

10
∥φnθ∥21,Ω + Cκ−1∥ψn∥22,Ω∥ηnθ ∥21,Ω +

α̂ATκ

10
∥φnθ∥21,Ω

+ Cκ−1(∥θn∥21,Ω + ∥ηnθ ∥21,Ω)∥ηnψ∥22,Ω −Bh
skew(φ

n
ψ; θ

n
h , φ

n
θ ).

(5.5.26)

However, since the discrete trilinear form Bh
skew(·; ·, ·) does not satisfy an analogous property

to Lemma 5.5.1, we will bound the last term in (5.5.26) by a di�erent way. Indeed, adding and
subtracting adequate terms, using the de�nition of trilinear form, the Hölder inequality and
employing the continuity of the L2-projections involved (cf. (5.3.5)), we obtain

−Bh
skew(φ

n
ψ; θ

n
h , φ

n
θ ) = Bh

skew(φ
n
ψ; η

n
θ , φ

n
θ ) +Bh

skew(φ
n
ψ;−θn, φnθ )

=
1

2

(
Bh
T (φ

n
ψ; η

n
θ , φ

n
θ )−Bh

T (φ
n
ψ;φ

n
θ , η

n
θ )
)
+Bh

skew(φ
n
ψ;−θn, φnθ )

≤ C
∑
K∈Th

∥Πℓ−1
K ∇ηnθ ∥L∞(K)∥curl φnψ∥0,K∥φnθ∥0,K

+ C
∑
K∈Th

∥Πℓ−1
K ηnθ ∥L∞(K)∥curl φnψ∥0,K∥∇φnθ∥0,K +Bh

skew(φ
n
ψ;−θn, φnθ ).

(5.5.27)

Now, applying an inverse inequality for polynomials, the continuity of Πℓ−1
K , and Proposi-

tion 5.5.4, for r ≥ 1 we get

∥Πℓ−1
K ∇ηnθ ∥L∞(K) ≤ Ch−1

K ∥Πℓ−1
K ∇ηnθ ∥0,K ≤ Ch−1

K ∥ηnθ ∥1,K ≤ C∥θn∥1+r,K ≤ Creg.

Analogously, we have that

∥Πℓ−1
K ηnθ ∥L∞(K) ≤ C∥θn∥1+r,K ≤ Creg.

Next, under assumption θn ∈ W1
∞(Ω), the de�nition of the form Bh

skew(·; ·, ·) and the Cauchy-
Schwarz inequality, we get

Bh
skew(φ

n
ψ;−θn, φnθ ) ≤ C1∥θn∥W1

∞(Ω)∥φnψ∥1,Ω∥φnθ∥0,Ω ≤ Creg∥φnψ∥1,Ω∥φnθ∥0,Ω.

Inserting the above estimates in (5.5.27), and applying the Cauchy-Schwarz and Young
inequalities, it follows

−Bh
skew(φ

n
ψ; θ

n
h , φ

n
θ ) ≤ 3Creg∥φnψ∥1,Ω∥φnθ∥1,Ω ≤ Cκ−1∥φnψ∥21,Ω +

α̂ATκ

10
∥φnθ∥21,Ω. (5.5.28)

Then, combining the estimates (5.5.24), (5.5.25), (5.5.26) and (5.5.28), we obtain

IB ≤ Cκ−1h2min{s,r}∥ψn∥22+s,Ω∥θn∥21+r,Ω + Cκ−1∥ψn∥22,Ω∥ηnθ ∥21,Ω

+ Cκ−1(∥θn∥21,Ω + ∥ηnθ ∥21,Ω)∥ηnψ∥22,Ω +
4α̂ATκ

10
∥φnθ∥21,Ω + C(κ−1 + 1)∥φnψ∥21,Ω.

(5.5.29)



5.5. Convergence analysis 119

Now, for the term IA, we add and subtract θnπ ∈ Pℓ(K) such that Proposition 5.5.1 holds
true, then applying the consistency property of Ah,KT (·, ·), the triangle inequality and Proposi-
tion 5.5.4, we have that

IA = κ
∑
K∈Th

(
AKT (θ

n, φnθ )− Ah,KT (θnI , φ
n
θ )
)

= κ
∑
K∈Th

(
AKT (θ

n − θnπ , φ
n
θ ) + Ah,KT (θnπ − θnI , φ

n
θ )
)

≤ Cκhr∥θn∥1+r,Ω∥φnθ∥1,Ω

≤ Ch2r∥θn∥21+r,Ω +
α̂ATκ

10
∥φnθ∥21,Ω.

(5.5.30)

Now, from bounds (5.5.12), (5.5.22), (5.5.23), (5.5.29) and (5.5.30), the de�nition and equiv-
alence of the norms ||| · |||T,h (cf. (5.4.6)) and ∥ · ∥0,Ω, together with the coercivity of bilinear
form AhT (·, ·), we obtain the estimate (5.5.21).

The following result establishes an error estimate for the fully-discrete virtual scheme (5.4.1).

Theorem 5.5.1. Suppose that the external forces satisfy fψ ∈ L∞(0, T ;Hs(Ω)), fθ ∈ L∞(0, T ; Hr(Ω))
and g ∈ L∞(0, T ;Hmin{s,r}(Ω) ∩ L∞(Ω)), with 1

2
< s ≤ k − 1 and 1 ≤ r ≤ ℓ. Let (ψn, θn) ∈

H2
0(Ω)× H1

0(Ω) be the solution of problem (5.2.13) at time t = tn. Moreover, assume that

ψ ∈ L∞(0, T ; H2+s(Ω)), ∂tψ ∈ L1(0, T ; H1+s(Ω)), ∂ttψ ∈ L1(0, T ; H1(Ω)),

θ ∈ L∞(0, T ; H1+r(Ω) ∩W1
∞(Ω)), ∂tθ ∈ L1(0, T ; Hr(Ω)), ∂ttθ ∈ L1(0, T ; L2(Ω)).

Let (ψnh , θ
n
h) ∈ Wh

k ×Hh
ℓ be the virtual element solution generated by scheme (5.4.1). Then, the

following estimate holds

∥(ψn − ψnh , θ
n − θnh)∥2H1(Ω)×L2(Ω) +∆t

n∑
j=1

∥(ψj − ψjh, θ
j − θjh)∥

2
H2(Ω)×H1(Ω) ≤ C(h2min{s,r} +∆t2),

where the constant C is positive and depends on the physical parameters ν, κ, �nal time T , mesh
regularity parameter, the regularity of the Boussinesq solution �elds (ψ, θ) and the external forces
fψ, fθ,g, but is independent of mesh size h and time steps ∆t.

Proof. The desired estimate will follow combining Lemmas 5.5.6 and 5.5.7 with the discrete
Gronwall inequality. Indeed, we proceed to multiply by 2∆t the estimates (5.5.13) and (5.5.21),
then by employing the Young inequality to the resulting bounds and iterating j = 0, . . . , n, we
have



120 Chapter 5. A VEM for the nonstationary Boussinesq equations

|||φnψ|||2F,h + |||φnθ |||2T,h +∆t
n∑
j=0

∥φjψ∥
2
2,Ω +∆t

n∑
j=0

∥φjθ∥
2
1,Ω

≤ C∆t
n∑
j=0

[
1 + ν−3

(
∥ηjψ∥

4
2,Ω + ∥ψj∥42,Ω

)]
|||φjψ|||

2
F,h + C∆t

n∑
j=0

[
1 + ∥gj∥2∞,Ω

]
|||φjθ|||

2
T,h

+ C∆t
n∑
j=0

[
ν−1(∥ψj∥22,Ω + ∥ηjψ∥

2
2,Ω) + κ−1∥θj∥21,Ω

]
∥ηjψ∥

2
2,Ω

+ C∆t
n∑
j=0

[
κ−1(∥ψj∥22,Ω + ∥ηjψ∥

2
2,Ω) + ∥gj∥2∞,Ω

]
∥ηjθ∥

2
1,Ω

+ C∆th2s
(
∥fψ∥2L∞(0,tn;Hs(Th)) + ∥∂tψ∥2L1(0,tn;H1+s(Ω)) + ν−1∥ψ∥2L∞(0,tn;H2+s(Ω))

)
+∆th2min{s,r}max{∥g∥2L∞(0,tn;Hmin{s,r}(Ω)), ∥g∥

2
L∞(0,tn;L∞(Ω))}∥θ∥2L∞(0,tn;Hr(Ω))

+ C∆th2r
(
∥fθ∥2L∞(0,tn;Hr(Th)) + ∥∂tθ∥2L1(0,tn;Hr(Ω))

)
+ C∆tκ−1h2min{s,r}

(
∥ψ∥2L∞(0,tn;H2+s(Ω)) + ∥θ∥2L∞(0,tn;H1+r(Ω))

)
+ C∆t2

(
∥∂ttθ∥2L1(0,tn;L2(Ω)) + ∥∂ttψ∥2L1(0,tn;H1(Ω))

)
+ α̂MF

∥φ0
ψ∥21,Ω + α̂MT

∥φ0
θ∥20,Ω.

Thus, applying the discrete Gronwall inequality (cf. Lemma 5.5.5), choosing (ψ0
h, θ

0
h) = (ψI(0), θI(0))

and using Propositions 5.5.3 and 5.5.4 along with the equivalence of norms, we have

(∥φnψ∥21,Ω + ∥φnθ∥20,Ω) + ∆t
n∑
j=1

(∥φjψ∥
2
2,Ω + ∥φjθ∥

2
1,Ω) ≤ C(h2min{s,r} +∆t2),

with 1
2
< s ≤ k − 1, 1 ≤ r ≤ ℓ and C > 0 is independent of mesh size h and time step ∆t.

Finally, the desired result follows from the above estimate, triangular inequality, together
with Propositions 5.5.4 and 5.5.5.

Remark 5.5.1. In the present framework, the main advantage of using an energy projector
Shψn, as we do for the stream-function space, is to obtain a shorter proof. Nevertheless, for the
temperature variable we do not use an energy projector, but resort to a standard interpolant θnI .
The reason is that we need also some local approximation properties for the temperature �eld
that the energy projection operator, being global in nature, would not have.

5.6 Numerical results

In this section we carry out numerical experiments in order to support our analytical results
and illustrate the performance of the proposed fully-discrete virtual scheme (5.4.1) for the
Boussinesq system. In all examples, we use the lowest order virtual element spaces Wh

2 and Hh
1 ,

for the stream-function and temperature �elds, respectively. At each discrete time, the nonlinear
fully-discrete system (5.4.1) is linearized by using the Newton method. For the �rst time step,
we take as initial guess (ψin

h , θ
in
h ) = (0, 0), and for all n ≥ 1 we take (ψin

h , θ
in
h ) = (ψn−1

h , θn−1
h ).
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The iterations are �nalized when the ℓ∞-norm of the global incremental discrete solution drop
below a �xed tolerance of Tol = 10−8.

The domain Ω is partitioned using the following sequences of polygonal meshes (an example
for each family is shown in Figure 5.1):

� T 1
h : Distorted quadrilaterals meshes;

� T 2
h : Triangular meshes;

� T 3
h : Voronoi meshes;

� T 4
h : Distorted concave rhombic quadri-

laterals.

(a) mesh T 1
h (b) mesh T 2

h (c) mesh T 3
h (d) mesh T 4

h

Figure 5.1: Domain discretized with di�erent meshes.

In order to test the convergence properties of the proposed VEM, we measure some errors
as the di�erence between the exact solutions (ψ, θ) and adequate projections of the numerical
solution (ψnh , θ

n
h). More precisely, we consider the following quantities:

E(ψ,L2,H2) :=
(
∆t

N∑
n=1

|ψ(tn)− ΠD,2ψnh |22,h
)1/2

,

E(θ,L2,H1) :=
(
∆t

N∑
n=1

|θ(tn)− Π∇,1θnh |21,h
)1/2

,

(5.6.1)

for the temperature we have

E(ψ,L∞,H1) := |ψ(T )− ΠD,2ψNh |1,h,
E(θ,L∞,L2) := ∥θ(T )− Π∇,1θNh ∥0,Ω.

(5.6.2)

Accordingly to Theorem 5.5.1, the expected convergence rate for the sum of the above norms
is O(h+∆t).

5.6.1 Accuracy assessment

In our �rst example, we illustrate the accuracy in space and time of the proposed VEM (5.4.1),
considering a manufactured exact solution on the square domain Ω := (0, 1)2, the time interval
[0, 1] and force per unit mass g = (0,−1)T . We solve the Boussinesq system (5.2.1), taking the
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load terms fψ and fθ, boundary and initial conditions in such a way that the analytical solution
is given by:

u(x, y, t) =

(
u1(x, y, t)
u2(x, y, t)

)
=

(
(e10(t−1) − e−10) x2(1− x)2(2y − 6y2 + 4y3)

− (e10(t−1) − e−10)y2(1− y)2(2x− 6x2 + 4x3)

)
,

p(x, y, t) = (e10(t−1) − e−10)(sin(x) cos(y) + (cos(1)− 1) sin(1)),

ψ(x, y, t) = (e10(t−1) − e−10)x2(1− x)2y2(1− y)2 and θ(x, y, t) = u1(x, y, t) + u2(x, y, t).

In order to see the linear trend of the stream-function and temperature errors (5.6.1),
predicted by Theorem 5.5.1, we re�ne simultaneously in space and time. More precisely, for
each mesh family we consider the mesh re�nements with h = 1/4, 1/8, 1/16, 1/32, and we use
the same uniform re�nements for the time variable. In particular, for the mesh T 1

h , it can be
seen along the diagonal of Table 5.1, the expected �rst order convergence for the stream-function
and temperature errors (5.6.1).

In Figure 5.2, we display the errors (5.6.1) for the same simultaneous time and space re-
�nements (h = ∆t = 2−i, with i = 2, . . . , 5), using the four mesh families. We notice that the
rates of convergence predicted in Theorem 5.5.1 are attained by both unknowns.

E(ψ,L2; H2)

dofs
h
∆t

1/4 1/8 1/16 1/32 1/64

36 1/4 1.88912e-2 1.42183e-2 1.16131e-2 1.02912e-2 9.63665e-3

196 1/8 1.11333e-2 8.42107e-3 6.91546e-3 6.15400e-3 5.77765e-3

900 1/16 4.92223e-3 3.53363e-3 2.85747e-3 2.54826e-3 2.40427e-3

3844 1/32 3.61175e-3 2.11884e-3 1.46063e-3 1.21158e-3 1.11670e-3

15876 1/64 3.21002e-3 1.64565e-3 9.22443e-4 6.49802e-4 5.59824e-4

E(θ,L2; H1)

36 1/4 1.74892e-2 1.34200e-2 1.11391e-2 9.96756e-3 9.38232e-3

196 1/8 1.02277e-2 7.88174e-3 6.66404e-3 6.05736e-3 5.75702e-3

900 1/16 5.32067e-3 3.65373e-3 2.93777e-3 2.64415e-3 2.51594e-3

3844 1/32 3.80377e-3 2.18463e-3 1.49484e-3 1.24874e-3 1.16084e-3

15876 1/64 3.37157e-3 1.71644e-3 9.52229e-4 6.64250e-4 5.69713e-4

Table 5.1: Accuracy assessment. Errors (5.6.1) using the VEM (5.4.1), with polynomial degrees
(k, ℓ) = (2, 1), physical parameters ν = κ = 1 and the mesh family mesh T 1

h .

In order to study the trend of the stream-function and temperature errors (5.6.2), we show
in Table 5.2 the results considering again the mesh T 1

h , with h = ∆t = 2−i, with i = 2, . . . , 5.
In particular, we can observe that the rate of convergence in the mesh size h seems higher than
one; this is not fully surprising, since standard interpolation estimates (in space) for the norms
in (5.6.2) indicate that, potentially, the discrete space could approximate the exact solution
with order O(h2). In order to better investigate this aspect, in Figure 5.3 we display the
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Figure 5.2: Accuracy assessment. Errors (5.6.1) for simultaneous space and time re�nements,
using the VEM (5.4.1) with polynomial degrees (k, ℓ) = (2, 1), physical parameters ν = κ = 1
and the mesh families T i

h , i = 1, . . . , 4.

errors (5.6.2) for space and time re�nements given by h = 2−i and ∆t = 4−i, with i = 2, . . . , 5,
respectively, using the four mesh families. We notice that the rates of convergence seem indeed
quadratic with respect to h.

E(ψ,L∞; H1)

dofs
h
∆t

1/4 1/8 1/16 1/32 1/64

36 1/4 4.30301e-3 4.50090e-3 4.65255e-3 4.74590e-3 4.79749e-3

196 1/8 2.03865e-3 2.20110e-3 2.33234e-3 2.41662e-3 2.46443e-3

900 1/16 2.38767e-4 2.11074e-4 3.61809e-4 4.80109e-4 5.49619e-4
3844 1/32 7.26027e-4 4.35284e-4 2.05347e-4 6.71747e-5 4.99331e-5
15876 1/64 8.16241e-4 5.20174e-4 2.84604e-4 1.34953e-4 5.10645e-5

E(θ,L∞; L2)

36 1/4 3.44760e-3 3.94792e-3 4.28939e-3 4.48462e-3 4.58811e-3

196 1/8 9.85211e-4 1.44875e-3 1.82900e-3 2.06308e-3 2.19159e-3

900 1/16 5.96219e-4 2.98014e-4 3.26274e-4 4.64998e-4 5.57065e-4
3844 1/32 8.26668e-4 4.90632e-4 2.31786e-4 9.52686e-5 9.44396e-5
15876 1/64 8.90387e-4 5.68492e-4 3.13988e-4 1.53393e-4 6.48063e-5

Table 5.2: Accuracy assessment. Errors (5.6.2) using the VEM (5.4.1), with polynomial degrees
(k, ℓ) = (2, 1), the physical parameters ν = κ = 1 and the mesh family T 1

h .
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Figure 5.3: Accuracy assessment. Errors (5.6.2), using the VEM (5.4.1) with polynomial degrees
(k, ℓ) = (2, 1), the physical parameters ν = κ = 1 and the mesh families T i

h , i = 1, . . . , 4.

5.6.2 Performance of the VEM for small viscosity

In this test we consider the square domain Ω := (0, 1)2, the time interval [0, 1] and force per
unit mass g = (0,−1)T . We solve the Boussinesq system (5.2.1), taking the load terms fψ and
fθ, boundary and initial conditions in such a way that the analytical solution is given by:

u(x, y, t) =

(
u1(x, y, t)
u2(x, y, t)

)
=

(
− cos(t) sin(πx) sin(πy)
− cos(t) cos(πx) cos(πy)

)
,

p(x, y, t) = cos(t)(sin(πx) + cos(πy)− 2/π),

ψ(x, y, t) =
1

π
cos(t) sin(πx) cos(πy) and θ(x, y, t) = u1(x, y, t) + u2(x, y, t).

The purpose of this experiment is to investigate the performance of the VEM (5.4.1) for
small viscosity parameters. In Figure 5.4, we post the errors (5.6.1) of the stream-function
variable obtained with the mesh sizes h = 1/4, 1/8, 1/16 of T 2

h , considering di�erent values of ν
and �xing the time step ∆t as 1/8 and 1/16 (see Figure 5.4(a) and Figure 5.4(b), respectively).
It can be observed that the solutions of our VEM are accurate even for small values of ν. Larger
stream-function errors appear for very small viscosity values.

We observe that this results are in accordance with the general observation that exactly
divergence-free Galerkin methods are more robust with respect to small di�usion parameters,
see for instance [147] (and also [35] in the VEM context). On the other hand, note that the
scheme proposed here has no explicit stabilization of the convection term since this is not the
focus of the present work (for instance, the natural norm associated to the stability of the
discrete problem does not guarantee a robust control on the convection).
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(a) Stream-function errors with ∆t = 1/8
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(b) Stream-function errors with ∆t = 1/16

Figure 5.4: Small viscosity test. Errors (5.6.1) of the VEM (5.4.1), for di�erent values of ν and
κ = 1, using the meshes T 2

h , polynomial degrees (k, ℓ) = (2, 1).

5.6.3 Natural convection in a cavity with the left wall heating

In this last example we consider the 2D natural convection benchmark problem, describing
the behaviour of a incompressible �ow in a squared cavity, which is heated at the left wall (see
[161, 155, 128, 125, 158]). In particular, we consider the unitary square domain Ω = (0, 1)2.
The boundary conditions are given as follows: the temperature in the left and right walls are
θL = 1 and θR = 0, respectively, while in the horizontal walls is ∂nθ = 0 (i.e., insulated, there is
no heat transfer through these walls), no-slip boundary conditions are imposed for the �uid �ow
at all walls. In terms of the stream-function these conditions are given by: ψ = ∂xψ = ∂yψ = 0
on Γ × (0, T ), as shown in Figure 5.5. The initial conditions are chosen as ψ0 = −x + y and
θ0 = 1 (so that the initial data does not satisfy the boundary conditions).

We consider the forces fψ = 0, fθ = 0 and g = PrRa(0, 1)T , where Pr and Ra denote the
Prandtl and Rayleigh numbers, respectively. For the numerical experiment, we set the physical
parameters as: ν = Pr = 0.71, Ra ∈ [103, 106] and κ = 1.

In order to compare our results with the existing bibliographic, we decompose the domain
Ω using mesh T 5

h conformed by uniform squares (see Figure 5.5(b)). Moreover, the time step
is ∆t = 10−3 and �nal time T = 1.

Streamlines and isotherms of the discrete solution obtained with our VEM (5.4.1) are posted
in Figure 5.6, using Ra = 103, 104, 105, 106 and mesh size h = 1/64. The results show well
agreement with the results presented in the benchmark solutions in [161, 155, 128, 125, 158].

Tables 5.3 and 5.4 present a quantitative comparison between our results and those obtained
by the benchmark solutions in the above papers. Table 5.3 shows the maximum vertical velocity
at y = 0.5, for Ra = 104, 105 and 106, while Table 5.4 shows the maximum horizontal velocity
at x = 0.5, using the same values of the Rayleigh number. Here the numbers in the parenthesis
denotes the numbers of elements along each edge of the domain, and is therefore an indication
on the mesh �nesse. We can observe that the results show good agreement, even for higher
Rayleigh numbers.

Finally, for the natural convection problem we investigate the heat transfer coe�cient along
the vertical walls of the cavity in terms of the local Nusselt number (Nulocal), which is de�ned
by: Nulocal(x, y) := −∂nθ(x, y). Figure 5.7 describes the variation of local Nusselt number at
hot wall and cold wall, for di�erent values of the Rayleigh number. It can be seen that the
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ψ = ∂xψ = ∂yψ = 0, ∂nθ = 0

ψ = ∂xψ = ∂yψ = 0, ∂nθ = 0

ψ = 0

∂xψ = 0

∂yψ = 0

θL = 1

ψ = 0

∂xψ = 0

∂yψ = 0

θR = 0

(a) Boundary conditions (b) mesh T 5
h with h = 1/8

Figure 5.5: Natural convection cavity. Boundary conditions and domain discretized with mesh
T 5
h .
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Figure 5.6: Natural convection cavity: streamlines (top panels) and isotherms (bottom panels),
for Ra = 103, 104, 105 and 106, respectively (from left to right), using the mesh T 5

h (h = 1/64).

results show good agreement with the results presented in [161, 155, 128, 125, 158].



5.6. Numerical results 127

Ra VEM Ref [161] Ref [155] Ref [128] Ref [125] Ref [158]

104 19.56(64) 19.63(64) 19.51(41) 19.63(71) 19.90(71) 19.79(101)
105 68.46(64) 68.48(64) 68.22(81) 68.85(71) 70.00(71) 70.63(101)
106 216.37(64) 220.46(64) 216.75(81) 221.6(71) 228.0(71) 227.11(101)

Table 5.3: Natural convection cavity. Comparison of maximum vertical velocity u1h := Π1
h∂yψ

at y = 0.5 with the VEM (5.4.1) and mesh T 5
h (h = 1/64).

Ra VEM Ref [161] Ref [155] Ref [125] Ref [158]

104 16.15(64) 16.19(64) 16.18(41) 16.10(71) 16.10(101)
105 34.80(64) 34.74(64) 34.81(81) 34.0(71) 34.00(101)
106 65.91(64) 64.81(64) 65.33(81) 65.40(71) 65.40(101)

Table 5.4: Natural convection cavity. Comparison of maximum horizontal velocity u2h :=
−Π1

h∂xψ at x = 0.5 with the VEM (5.4.1) and mesh T 5
h (h = 1/64).
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(a) Nusselt in the hot wall
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(b) Nusselt in the cold wall

Figure 5.7: Natural convection cavity. Nusselt number along the hot wall (left) and the cold
wall (right) for varying Rayleigh numbers, using the VEM (5.4.1) and mesh T 5

h , with h = 1/64.



Chapter 6

The Morley-type virtual element method

for the Navier�Stokes equations in

stream-function form

6.1 Introduction

The two dimensional steady Navier-Stokes equations in its standard velocity-pressure form
reads as: given a su�ciently smooth force density f : Ω → R2, �nd (u, p) such that

−ν∆u+ (∇u)u+∇p = f , div u = 0 in Ω,

u = 0 on Γ := ∂Ω, (p, 1)0,Ω = 0,
(6.1.1)

where u : Ω → R2 is the velocity �eld, p : Ω → R is the pressure �eld and ν > 0 represents the
�uid viscosity. This system models the behaviour of a viscous incompressible �uid in the domain
Ω. The �rst and second equations in (6.1.1) dictates the momentum and mass conservation of
the �uid, while the third identity indicates non-slip boundary conditions for the velocity �eld
and the last equation represents the mean value of p over Ω vanishing, which is used for the
uniqueness of the pressure solution. Due to the important role it plays in the study of viscous
incompressible �ows, several numerical schemes have been developed to e�ciently approximate
the Navier�Stokes system. In particular, we are interested in discretizing this system by using
general polygonal decompositions and introducing the stream-function of the velocity �eld.

In the last years, numerical methods for PDEs on polytopal meshes have received substan-
tial attention. Di�erent approaches have been proposed (see for instance [149, 62, 86, 32, 80, 87,
108, 70] and the references therein), o�ering signi�cant �exibility in terms of dealing with com-
plicated domains. Among them, we can �nd the Virtual Element Method (VEM), which was
presented for �rst time in [27], as an evolution of mimetic �nite di�erences and a generalization
of the Finite Element Method (FEM). The approach of VEM allows to avoid an explicit con-
struction of the discrete shape functions and this fact implies a high �exibility of the method,
which is re�ected, for instance in the ability to construct numerical schemes of high-order on
general polygonal meshes (including �hanging vertexes� and nonconvex shapes). Moreover, in
the construction of discrete spaces with high-regularity and of schemes with the divergence-free
property (in the context of �uid problems). In virtue of these features, the VEM technology has
enjoyed extensive success in numerical modeling and engineering applications, both in its con-
forming and nonconforming approaches (see for instance [58, 65, 29, 18, 39, 22, 126, 127, 66]).

128
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In particular, many works have been devoted to solving problems in �uid mechanics by using
the VEM. Below are two list of representative works in the conforming and nonconforming
cases; [17, 98, 35, 41, 3, 131] and [64, 118, 164, 119], respectively. For a current state of the
art on VEM, we refer to book [16].

In [20, 163] the authors have introduced fully-nonconforming VEMs of high-order, in-
dependently and by using di�erent approaches to solve biharmonic problems. In particu-
lar, the lowest-order con�guration (i.e., k = 2) of these VEMs, can be consider as the ex-
tension of the popular Morley FE [141] to general polygonal meshes. Since then, several
schemes and analysis based on these VEMs have been developed for linear problems; see for
instance [116, 159, 81, 107, 67, 4]. In the present work we are interesting to extend the Morley-
type VEM to solve the nonlinear fourth-order Navier-Stokes equations in stream-function form
on simply connected domains (not necessarily convex) by using general polygonal decomposi-
tions.

Typically, the velocity-pressure formulation (6.2.1) is the most used to discretize the Navier-
Stokes problem. However, the stream-function formulation has shown to be a competitive
alternative to discretize �uid �ow problems in two dimensions, which has been the focus of
study in the last decades. In particular, we can highlight the following features: the system is
reduced in a singular scalar weak formulation, with automatic satisfaction of the incompress-
ibility condition (the velocity �eld is equal to the curl of the stream-function), the possibility
to recover further variables of interest such as the velocity, vorticity and pressure �elds by
postprocessing from the stream-function. Besides, for nonlinear problems, the resulting trilin-
ear form is naturally skew-symmetric (without adding additional terms), allowing more direct
stability and convergence arguments. On the other hand, the stream-function approach avoids
the di�culties related with the boundary values for the vorticity �eld, which are present in
stream-function�vorticity formulation. Due to the attractive features discussed above, over last
decades the stream-function formulation has received great attention from many researchers.
In particular, in the area of Numerical Analysis several works have been devoted to the de-
velopment and study of e�cient numerical schemes to approximate this system. For instance;
conforming and nonconforming FEMs in [71, 72, 91, 68], bivariate spline [115], hp-version dis-
continuous FE [143], NURBS-based Isogeometric Analysis in [151]. Moreover, in [111] the
nonconforming Morley FEM have been used to solve the steady Quasi-Geostrophic equations,
which can be seen as an extension (in form) of the two dimensional Navier-Stokes equations in
stream-function formulation.

In the present contribution, we con�gure the Stokes complex structure of the nonconform-
ing VEM introduced in [164] to solve the fourth-order nonlinear Navier-Stokes equations in
stream-function form on domains not necessarily convex and employing general polygonal par-
titions of the domain, allowing additionally the reconstruction of the pressure �eld. By using
the enhancement technique, we introduce a discrete Stokes complex structure associate to the
Morley- and Crouzeix-Raviart-type Virtual Element (VE) spaces. Then, we construct suitable
projections useful to build the discrete trilinear form, which mimics the interesting and nat-
urally skew-symmetry property of the continuous version (see below Remark 6.3.2). In order
to establish the well-posedness of the discrete nonconforming formulation, it is necessary to
prove the continuity of the resulting discrete trilinear form with respect to the natural norm in
the Morley-type VE space Mh. However, this fact does not follow directly, since it involves a
discrete Sobolev inclusion (namely, Mh ⊂ W1

4(Ω)). The derivation of the Sobolev embeddings
require particular attention for the nonconforming approach, which is usually considered a chal-



130 Chapter 6. The Morley-type VEM for the Navier-Stokes equations

lenging task. To the best of our knowledge, this is the �rst work where Sobolev embeddings
for the Morley-type VE space are established. More precisely, with the aim of achieving such
purpose, we introduce a novel enriching operator, which is a special kind of quasi-interpolation
operator that maps the elements of the sum space between the continuous and nonconforming
spaces (namely, Φ+Mh) to the conforming counterpart of the nonconforming space. Then, by
using this operator and its approximation properties, we provide new discrete Sobolev embed-
dings for the sum space Φ +Mh and we prove the well-posedness of the discrete problem by
using the Banach �xed-point Theorem. Moreover, this inclusion is strongly used to obtain the
error estimates of the method (see Remark 6.4.2).

It well know that due to nonconformity of the space increases the technicalities in the
demonstrations of error estimates in the nonconforming approach, implying in some cases high-
regularity of the solution, which are not realistic. Furthermore, for nonlinear problems these
di�culties increase remarkably. In the present work, by employing the naturally skew-symmetry
property of the discrete trilinear form and the discrete Sobolev inclusion, we write an abstract
convergence result for the nonlinear VE scheme. Then, by exploiting again the enriching
operator, we establish key approximation properties involving the bilinear and trilinear forms,
together with the consistency errors, allowing the derivation of an optimal error estimate in
broken H2-norm under the minimal regularity condition on the weak stream-function solution
(see below Theorem 6.2.2). In addition, by using duality arguments and the enriching operator
we also provided new optimal error estimates in the H1- and L2-norm under the same regularity
conditions on the stream-function and the force density.

On the other hand, by exploiting the stream-function approach, we present techniques to
recover further variables of physical interest, such as, the primitive velocity and pressure vari-
ables, along with the important vorticity �eld. More precisely, we recover the velocity and
vorticity �elds through a postprocess of the discrete stream-function by using adequate poly-
nomial projections, which are directly computable from the degrees of freedom. The pressure
recovery procedure require a special attention. Indeed, we approximate the �uid pressure by
employing the Stokes complex sequence associate to the Morley- and Crouzeix-Raviart-type
VE spaces, and solving an additional Stokes-like system with right hand side coming from the
virtual stream-function solution and the force density f . For all the postprocessed variables,
we provide optimal a priori error estimates. Furthermore, the numerical method is tested with
several benchmark tests, including the Kovasznay and cavity problems, where the theoretical
accuracy and the good performance of the scheme are corroborated.

We summarize the highlight of this article as follows:

� The development of a Stokes complex sequence associate to the Morley- and Crouzeix-
Raviart-type VE spaces allowing not only the approximation of the stream-function but
also the pressure recovery of the Navier-Stokes problem on simply connected polygonal
domains (not necessarily convex).

� The construction of a new enriching operator, which allows to prove novel discrete Sobolev
embeddings in the space sum Φ +Mh. Moreover, by using this operator, we develop a
rigorous analysis obtaining optimal error estimates in broken Hi-norms (i = 0, 1, 2) under
minimal regularity condition on the weak solution.

� Velocity, vorticity and pressure postprocessing algorithms with optimal error estimates
and performed numerical experiments that justify the theoretical error bounds and show
the good performance of the numerical scheme.



6.2. Preliminaries and continuous weak form 131

The results presented in this study mark a signi�cant milestone towards advancing the de-
velopment and analysis of novel numerical schemes based on the nonconforming Morley-type
VEM for solving fourth-order problems in more complicated situations, such as, nonlinear cou-
pled and/or time dependent systems present in the �uid and solid mechanics, and in large
scale driven ocean circulation. In particular, we note that the discrete Sobolev inclusion (see
below Theorem 6.4.1) can be used to establish a well-posedness analysis for the natural con-
vection problems in stream-function�temperature form, the von Karmán plate system and the
multi-layer Quasi-Geostrophic equations of the ocean, among others.

The outline of the remaining parts of this chapter reads as follows: in Section 6.2 we
introduce some preliminary notations and the stream-function weak formulation of the Navier-
Stokes problem (6.1.1). Moreover, we recall its well-posedness and regularity property. The
Morley-type VE discretization, together with the Crouzeix-Raviart VE space are described in
Section 6.3. In Section 6.4 we introduce the enriching operator, provide the discrete Sobolev
embeddings and the well-posedness of the discrete problem by using a �xed-point strategy. In
Section 6.5 we develop the error analysis of the scheme under minimal regularity condition on
the weak solution. In Section 6.6 we describe the recovery techniques for the velocity, vorticity
and pressure �elds by using the discrete stream-function solution. Finally, several numerical
tests on di�erent polygonal meshes are reported in Section 6.7.

6.2 Preliminaries and continuous weak form

The Navier-Stokes in velocity-pressure weak form. The standard variational formu-
lation of problem (6.1.1) reads as: �nd (u, p) ∈ H×Q, such that

ν(∇u,∇v)0,Ω + ((∇u)u,v)0,Ω − (p, div v)0,Ω = (f ,v)0,Ω ∀v ∈ H,

−(g, div u)0,Ω = 0 ∀g ∈ Q,
(6.2.1)

where the Hilbert spaces H and Q are de�ned by:

H :=
{
v ∈ H1(Ω) : v = 0 on Γ

}
and Q :=

{
g ∈ L2(Ω) : (g, 1)0,Ω = 0

}
. (6.2.2)

It is well known that problem (6.2.1) admits a unique solution (see [103]) under smallness
assumption on the data. Moreover, several works have been devoted to develop numerical
schemes to approximate this formulation. For instance, see [35, 97, 118, 162] in the VEM
context.

In this work, we will study the Navier-Stokes equations with a di�erent approach. More
precisely, under assumption that the domain is simply connected and by using the incom-
pressibility condition of the velocity �eld (i.e., div u = 0), we write an equivalent variational
formulation in terms of the stream-function of the velocity �eld.

6.2.1 The stream-function weak form

Since Ω ⊂ R2 is simply connected, is well known that a vector function v ∈ Z :=
{v ∈ H : div v = 0 in Ω} if and only if there exists a function φ ∈ H2(Ω) (called stream-
function), such that v = curl φ.

Let us consider the following Hilbert space Φ := {φ ∈ H2(Ω) : φ = 0, ∂nφ = 0 on Γ},
and we endow this space with the norm ∥φ∥2,Ω := (D2φ,D2φ)

1/2
0,Ω ∀φ ∈ Φ. Then, we have
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that a variational formulation of problem (6.1.1), formulated in terms of stream-function, read
as (see for instance [146, Section 10.4]): given f ∈ L2(Ω), �nd ψ ∈ Φ, such that

νA(ψ, ϕ) +B(ψ;ψ, ϕ) = F (ϕ) ∀ϕ ∈ Φ, (6.2.3)

where the forms A : Φ× Φ → R, B : Φ× Φ× Φ → R and F : Φ → R are de�ned by:

A(ψ, ϕ) := (D2ψ,D2ϕ)0,Ω, (6.2.4)

B(ζ;ψ, ϕ) := (∆ζ curl ψ,∇ϕ)0,Ω, (6.2.5)

F (ϕ) := (f , curl ϕ)0,Ω. (6.2.6)

From the de�nition of the bilinear form A(·, ·) and equivalence of norms, we obtain its
Φ-ellipticity. Moreover, by using the Cauchy-Schwarz inequality we easily obtain:

|A(φ, ϕ)| ≤ ∥φ∥2,Ω∥ϕ∥2,Ω ∀φ, ϕ ∈ Φ,

|F (ϕ)| ≤ CF∥f∥0,Ω∥ϕ∥2,Ω ∀ϕ ∈ Φ,

where CF is a positive constant. Now, we recall the following continuous Sobolev inclusion: for
all v ∈ H1(Ω)2, there exists C̃sob > 0 such that

∥v∥L4(Ω) ≤ C̃sob∥v∥1,Ω. (6.2.7)

Then, by using the Hölder inequality and the above inclusion, there exists ĈB := C̃2
sob > 0,

such that

|B(ζ;φ, ϕ)| ≤ ĈB ∥ζ∥2,Ω∥φ∥2,Ω∥ϕ∥2,Ω ∀ζ, φ, ϕ ∈ Φ.

From the above properties and the �xed-point Banach theorem, we can prove that prob-
lem (6.2.3) is well-posed. More precisely, we have the following existence and uniqueness result
(see for instance, [103, Chapter IV, Section 2.2]).

Theorem 6.2.1. If ĈBCFν
−2∥f∥0,Ω < 1, then there exists a unique ψ ∈ Φ solution to prob-

lem (6.2.3), which satis�es the following continuous dependence on the data

∥ψ∥2,Ω ≤ CFν
−1∥f∥0,Ω.

Now, we state an additional regularity result for the solution of problem (6.2.3) (see for
instance [49]).

Theorem 6.2.2. Let ψ ∈ Φ be the unique solution of problem (6.2.3). Then, there exist
γ ∈ (1/2, 1] and Creg > 0, such that ψ ∈ H2+γ(Ω) and

∥ψ∥2+γ,Ω ≤ Creg∥f∥0,Ω.

6.3 Morley-type virtual element approximation

This section is devoted to the construction of a VEM to solve problem (6.2.3). We will
introduce a Morley-type VE space by using some auxiliaries local virtual spaces and the en-
hancement technique. More precisely, the present framework is based on the discrete Stokes



6.3. Morley-type virtual element approximation 133

complex sequence for theMorley- and Crouzeix-Raviart-type VE spaces presented in [164]. This
Stokes complex structure will allow us to approximate the main unknown in problem (6.2.3)
and as an important topic, also it will allow to compute the pressure variable of the Navier-
Stokes system (6.1.1) as a postprocess, by solving a Stokes-like problem with right hand side
coming from the discrete-stream function solution and force density f (cf. Subsection 6.6.3).

We start with a subsection introducing the polygonal decompositions and some useful no-
tations, these preliminaries are followed by a subsection on the local and global nonconforming
virtual spaces, their degrees of freedom and the classical VEM local projectors. Later on, we
introduce other polynomial projections useful to build the discrete trilinear form.

The polygonal decompositions and basic setting

Let {Th}h>0 be a sequence of decompositions of Ω into general non-overlapping simple
polygons K, where h := maxK∈Th hK and hK is the diameter of K. We will denote by ∂K, NK

and |K| the boundary, the number of vertices and area of each polygon K, respectively.
For each element K we denote by E K

h the set of its edges, while the set of all the edges in Th
will be denote by Eh. We decompose this set as the following union: Eh := E int

h ∪ E bdry
h , where

E int
h and E bdry

h are the set of interior and boundary edges, respectively. For the set of all the

vertices we have an analogous notation. More precisely, we will denote by Vh := V int
h ∪ V bdry

h

the set of vertices in Th, where V int
h and V bdry

h are the set of interior and boundary vertices,
respectively. In addition, we denote by e a generic edge of Eh and by he its length.

Besides, for each K ∈ Th, we denote by nK its unit outward normal vector and by tK its
tangential vector along the boundary ∂K. Moreover, we will adopt the notation ne and te for
a unit normal and tangential vector of an edge e ∈ Eh, respectively.

For every ℓ > 0 and q ∈ [1,+∞), we de�ne the following broken Sobolev spaces

Wℓ
q(Th) := {ϕ ∈ L2(Ω) : ϕ|K ∈ Wℓ

q(K) ∀K ∈ Th},

and we endow these spaces with the following broken seminorm:

|ϕ|ℓ,q,h :=
( ∑

K∈Th

|ϕ|qℓ,q,K
)1/q

,

where | · |ℓ,q,K is the usual seminorm in Wℓ,q(K). When q = 2, we omit the index q and write
Hℓ(Th) instead Wℓ

2(Th), with the corresponding seminorm denoted by | · |ℓ,h.
Next, we will de�ne the jump operator across an edge e. First, for each ϕh ∈ H2(Th), we

denote by ϕ±
h the trace of ϕh|K± , with e ⊂ ∂K+ ∩ ∂K−. Then, the jump operator [[·]] is de�ned

as follows:

[[ϕh]] :=

{
ϕ+
h − ϕ−

h for every e ∈ E int
h ,

ϕh|e for every e ∈ E bdry
h .

The same notation is adopted for vectorial �elds. Let us de�ne a subspace of H2(Th) with
certain continuity:

H2,NC(Th) :=
{
ϕh ∈ H2(Th) : ϕh ∈ C0(V int

h ), ϕh(vi) = 0 ∀vi ∈ V bdry
h ,

([[∂neϕh]], 1)0,e = 0 ∀e ∈ Eh
}
,
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where C0(V int
h ) is the set of functions continuous at internal vertexes.

Finally, for every integer ℓ ≥ 0, the piecewise ℓ-order polynomial space is de�ned by:

Pℓ(Th) := {χ ∈ L2(Ω) : χ|K ∈ Pℓ(K) ∀K ∈ Th}.

In what follows, we will introduce some preliminary spaces, which are useful to construct
the Morley-type VE space to approximate the solution of problem (6.2.3).

6.3.1 Some auxiliary spaces

For every polygon K ∈ Th, �rst we consider the following auxiliary �nite dimensional
space [20, 163, 116]:

M̃h(K) :=
{
ϕh ∈ H2(K) : ∆2ϕh ∈ P2(K), ϕh|e ∈ P2(e), ∆ϕh|e ∈ P0(e) ∀e ∈ ∂K

}
.

Next, for a given ϕh ∈ M̃h(K), we introduce the following sets:

� DM1: the values of ϕh(vi) for all vertex vi of the polygon K;

� DM2: the edge moments (∂neϕh, 1)0,e ∀ edge e ∈ E K
h .

For each polygon K, we de�ne the following projector ΠD
K : M̃h(K) → P2(K) ⊆ M̃h(K),

as the solution of the local problems:

AK(ΠD
Kϕh, χ) = AK(ϕh, χ) ∀χ ∈ P2(K),

⟨⟨ ΠD
Kϕh, χ ⟩⟩K = ⟨⟨ϕh, χ⟩⟩K ∀χ ∈ P1(K),

where ⟨⟨φh, ϕh⟩⟩K is de�ned as follows:

⟨⟨φh, ϕh⟩⟩K :=

NK∑
i=1

φh(vi)ϕh(vi),

with vi, 1 ≤ i ≤ NK , being the vertices of K and AK(·, ·) is the restriction of the continuous
form A(·, ·) (cf. (6.2.4)) on the element K.

The operator ΠD
K : M̃h(K) → P2(K) is explicitly computable for every ϕh ∈ M̃h(K), using

only the information of the linear operators DM1−DM2 (for further details, we refer to [163]).
Now, we will introduce another auxiliary local spaces. Indeed, following [164] we de�ne the

spaces:

Û(K) :=
{
vh ∈ H1(K) : div vh ∈ P0(K), rotvh ∈ P0(K), vh · ne ∈ P1(e) ∀e ∈ E K

h

}
,

and

Z̃(K) :=
{
ϕh ∈ H2(K) : ∆2ϕh = 0 in K, ϕh|e = 0, ∆ϕh|e ∈ P0(e) ∀e ∈ E K

h

}
.

By adding Û(K) and curl of the functions belongs to Z̃(K), we de�ne the space

U0(K) := Û(K) + curl (Z̃(K)).

Then, for each vh ∈ U0(K) we introduce the set of vector-valued, bounded linear functional
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� D U : the edge moments h−1
e (vh,1)0,e ∀e ∈ E K

h .

We observe that P1(K) ⊂ U0(K), and we introduce the grad projection operator Π∇
K :

U0(K) → P1(K) as the solution of the following problem:

(∇(Π∇
Kvh − vh),∇χ)0,K = 0 ∀χ ∈ P1(K)2,

(Π∇
Kvh − vh, 1)0,∂K = 0.

(6.3.1)

By using an integration by parts, we can deduce that the polynomial Π∇
Kvh is computable

for all vh ∈ U0(K) from the set of values D U (see [164]).
Next, by employing the grad projection operator Π∇

K , we de�ne the local Crouzeix-Raviart-
like VE space by:

Uh(K) :=
{
vh ∈ U0(K) : (vh · ne −Π∇

Kvh · ne, χ)0,e ∀χ ∈ P1(e) \ P0(e), ∀e ∈ E K
h

}
.

Further, from [164] we have that the set D U characterize uniquely the functions of Uh(K).

Moreover, for each ϕh ∈ M̃h(K), the function Π∇
Kcurl ϕh is computable using the sets DM1

and DM2.
The global Crouzeix-Raviart-like space is de�ned as follows [164]:

Uh :=
{
vh ∈ L2(Ω) : vh|K ∈ Uh(K) ∀K ∈ Th, ([[vh]],1)0,e = 0 ∀e ∈ Eh

}
. (6.3.2)

We have that the dimension of the space Uh is equal to 2N
Eh , where NEh is the total number

of mesh edges of the discretization Th. This space will be useful in subsection 6.6.3 to present
the pressure recovery technique.

Remark 6.3.1. The nonconforming VE space de�ned in (6.3.2) coincides with the Crouzeix-
Raviart �nite element space when the polygon K is a triangle. Therefore, this space can be seen
as an extension of the classical Crouzeix-Raviart space from triangle to polygonal element in
the nonconforming VEM context. For further details of this discussion, see [164, Remark 8].

6.3.2 The Morley-type nonconforming virtual element space

By using the auxiliary spaces de�ned in the above subsection, for each K ∈ Th we introduce
the local Morley-type VE space [164]:

Mh(K) :=
{
ϕh ∈ M̃h(K) : (curl ϕh · ne −Π∇

K (curl ϕh · ne), χ)0,e = 0

∀χ ∈ P1(e) \ P0(e) ∀e ∈ E K
h , (ϕh − ΠD

Kϕh, χ)0,K = 0 ∀χ ∈ P2(K)
}
.
(6.3.3)

In the next result we summarize the main properties of the local Morley-type VE space.

Lemma 6.3.1. For each polygons K, the space Mh(K) de�ned in (6.3.3), we have P2(K) ⊆
Mh(K). Moreover, we can deduce the following properties:

� The linear operators DM1−DM2 constitutes a set of degrees of freedom for Mh(K);

� The operator ΠD
K : Mh(K) → P2(K) is computable using the sets DM1−DM2;
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� For each ϕh ∈ Mh(K), the function Π∇
Kcurlϕh is computable using the degrees of freedom

DM1−DM2.

With the above preliminaries we can introduce the global Morley-type VE space to the
numerical approximation of the problem (6.2.3). Indeed, for every decomposition Th of Ω into
polygons K, the global nonconforming VE space is given by:

Mh :=
{
ϕh ∈ H2,NC(Th) : ϕh|K ∈ Mh(K) ∀K ∈ Th

}
. (6.3.4)

We have thatMh ⊂ H2,NC(Th), butMh ⊈ Φ. Moreover, we observe that the nonconforming
VE does not require C0-continuity over Ω. This space can be seen as an extension of the popular
Morley FE [141] to general polygonal meshes. For further details about this discussion, we refer
to [164, Remark 20] and [163, Remark 4.1].

For the continuous bilinear form A(·, ·), we adopt the following notation:

A(φh, ϕh) :=
∑
K∈Th

AK(φh, ϕh) ∀φh, ϕh ∈ Φ +Mh.

We also adopt the same notation by the continuous forms B(·; ·, ·) and F (·).

6.3.3 Polynomial projection operators and discrete forms

This subsection is dedicated to the presentation of other important polynomial projections,
along with the construction of the trilinear form and the load term, by using such projections.
Moreover, we build the bilinear discrete form.

For each m ∈ N ∪ {0}, we consider the usual L2-projection, Πm
K : L2(K) → Pm(K), de�ned

by the function such that

(ϕ− Πm
Kϕ, χ)0,K = 0 ∀χ ∈ Pm(K). (6.3.5)

Moreover, we de�ne its vectorial Πm
K version in an analogous way. For the projection previously

de�ned we have the following result.
We recall that there exists Cbd > 0 such that (see [35]):

∥Πm
Kϕ∥L4(K) ≤ Cbd∥ϕ∥L4(K) and ∥Πm

Kϕ∥0,K ≤ ∥ϕ∥0,K ∀ϕ ∈ L2(K). (6.3.6)

Lemma 6.3.2. Let Π2
K ,Π

0
K and Π1

K be the operators de�ned by relation (6.3.5) and by its vecto-
rial version. Then, for each ϕh ∈ Mh(K), the polynomial functions Π2

Kϕh,Π
0
K∆ϕh,Π

1
Kcurlϕh

and Π1
K∇ϕh are computable using only the information of the degrees of freedom DM1−DM2.

Proof. Let ϕh ∈ Mh(K), the proof of the function Π2
Kϕh follows from the de�nition of the

space Mh(K) (cf. (6.3.3)). Moreover, using an integration by parts we obtain

(curl ϕh,χ)0,K = rotχ(Π2
Kϕh, 1)0,K − (ϕh,χ · tK)0,e ∀χ ∈ P1(K)2,

then we also conclude that the Π1
Kcurl ϕh is fully computable from the degrees of freedom.

Similarly, we prove that the functionΠ1
K∇ϕh is computable from the degrees of freedomDM1−

DM2.
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Next, we will prove that the polynomial function Π0
K∆ϕh is also computable. Indeed, using

integration by parts, we have

Π0
K∆ϕh = |K|−1(∂nKϕh, 1)0,∂K = |K|−1

∑
e∈∂K

(∂neϕh, 1)0,e,

and note that the above integral is computable using the output values of the set DM2.

Now, we will build the discrete version of the continuous forms de�ned in (6.2.4), (6.2.5)
and (6.2.6) using the operators introduced previously. First, we consider the following discrete
local bilinear form, AKh : Mh(K)×Mh(K) → R approximating the continuous form A(·, ·):

AKh (φh, ϕh) := AK
(
ΠD
Kφh,Π

D
Kϕh

)
+ SKD

(
(I−ΠD

K)φh, (I−ΠD
K)ϕh

)
∀φh, ϕh ∈ Mh(K), (6.3.7)

where SKD (·, ·) is any symmetric positive de�nite bilinear form to be chosen as to satisfy:

c∗A
K(ϕh, ϕh) ≤ SKD (ϕh, ϕh) ≤ c∗AK(ϕh, ϕh) ∀ϕh ∈ Ker(ΠD

K), (6.3.8)

with c∗ and c∗ positive constants independent of K. More precisely, we choose the following
computable representation satisfying property (6.3.8) (see [67, Lemma 5.1]):

SKD (φh, ϕh) := h−2
K

NK
dof∑
i=1

dofi(φh)dofi(ϕh) ∀φh, ϕh ∈ Mh(K),

where NK
dof denote the number of degrees freedom of Mh(K) and dofi(·) is the operator that

to each smooth enough function ϕ associates the ith local degree of freedom dofi(ϕ), with
1 ≤ i ≤ NK

dof .
To approximate the local trilinear form BK(·; ·, ·), we consider the following expression:

BK
h (ζh;φh, ϕh) :=

(
Π0
K∆ζh Π

1
Kcurl φh,Π

1
K∇ϕh

)
0,K

∀ζh, φh, ϕh ∈ Mh(K). (6.3.9)

Finally, for the functional (6.2.6) we consider the following local approximation:

FK
h (ϕh) := (Π1

Kf , curl ϕh)0,K ≡ (f ,Π1
Kcurl ϕh)0,K ∀ϕh ∈ Mh(K).

Thus, for all ζh, φh, ϕh ∈ Mh, we de�ne the global multilineal forms, as follows:

Ah : Mh ×Mh → R, Ah(φh, ϕh) :=
∑
K∈Th

AKh (φh, ϕh), (6.3.10)

Bh : Mh ×Mh ×Mh → R, Bh(ζh;φh, ϕh) :=
∑
K∈Th

BK
h (ζh;φh, ϕh), (6.3.11)

Fh : Mh → R, Fh(ϕh) :=
∑
K∈Th

FK
h (ϕh). (6.3.12)

We recall that all the forms de�ned above are computable using the degrees of freedom and
the trilinear form Bh(·; ·, ·) is extendable to the whole space Φ.

The following result establishes the classical consistency and stability VEM properties (see
for instance [27, 22, 65, 164]).
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Lemma 6.3.3. The local bilinear forms AK(·, ·) and AKh (·, ·) satisfy the following properties:

� consistency: for all h > 0 and for all K ∈ Th, we have that

AKh (χ, ϕh) = AK(χ, ϕh) ∀χ ∈ P2(K), ∀ϕh ∈ Mh(K), (6.3.13)

� stability and boundedness: there exist positive constants α1 and α2, independent of h and
K, such that:

α1A
K(ϕh, ϕh) ≤ AKh (ϕh, ϕh) ≤ α2A

K(ϕh, ϕh) ∀ϕh ∈ Mh(K). (6.3.14)

Remark 6.3.2. We observe that the discrete trilinear form Bh(·; ·, ·), de�ned in (6.3.11) (see
also (6.3.9)), preserves the natural skew-symmetry property of the continuous trilinear form
B(·; ·, ·) de�ned in (6.2.5). Thus, we do not need to add any additional term in order to guar-
antee such property, unlike velocity-pressure virtual element formulations, where a transpose
term is added (see [162] in the nonconforming approach). This important fact has also advan-
tages from the computational viewpoint.

6.4 Discrete formulation and its well-posedness

In this section we write the nonconforming discrete VE formulation and we provide its
well-posedness by using a �xed-point strategy.

The nonconforming VE problem reads as: �nd ψh ∈ Mh, such that

νAh(ψh, ϕh) +Bh(ψh;ψh, ϕh) = Fh(ϕh) ∀ϕh ∈ Mh, (6.4.1)

where the multilineal forms Ah(·, ·), Bh(·; ·, ·) and Fh(·) are de�ned in (2.3.12), (2.3.13) and
(2.3.15), respectively.

In order to prove that problem (6.4.1) is well-posed, in next section, we will introduce

an enriching operator Ẽh, from the sum space Φ+Mh into the conforming counterpart of the
space Mh. Moreover, we establish some approximation properties for this operator, and by
using such estimates we provide novel embedding results for the sum space Φ+Mh, which will
be useful to establish the well-posedness of discrete problem and the error estimates.

We remark that the operator Ẽh constructed here can be seen as an extension of the enriching
operator de�ned in [107] and the quasi-interpolation operator constructed in [75].

6.4.1 A new enriching operator

With the aim of introducing the aforementioned operator and establishing its approximation
properties, we start by assuming the classical assumptions on the polygonal decomposition.
There exists a uniform number ρ > 0 independent of Th, such that for every K ∈ Th it holds
[27]:

A1 : K is star-shaped with respect to every point of a ball of radius ≥ ρhK ;

A2 : the length he of every edge e ∈ ∂K, satis�es he ≥ ρhK .

From reference [74] we have that if the mesh Th ful�lling the assumptions A1 and A2, then
the mesh also satisfy the following property:
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P1 : For each K ∈ Th, there exists a virtual triangulation T K
h of K such that T K

h is uniformly
shape regular and quasi-uniform. The corresponding mesh size hT of T K

h is proportional
to hK . Every edge of K is a side of a certain triangle in T K

h .

Remark 6.4.1. From property P1, we have that the number of triangles of each virtual trian-
gulation T K

h is uniformly bounded by a number L and the size of each triangle is comparable to
that of the polygon (for further details, see [74]).

Now, for the sake of completeness, we will recall the construction of the H2-conforming
virtual space [18].

Conforming virtual local and global space. For every polygon K ∈ Th, we introduce
the following preliminary �nite dimensional space [18]:

W̃C
h (K) :=

{
ϕh ∈ H2(K) : ∆2ϕh ∈ P2(K), ϕh|∂K ∈ C0(∂K), ϕh|e ∈ P3(e) ∀e ⊆ ∂K,

∇ϕh|∂K ∈ C0(∂K), ∂neϕh|e ∈ P1(e) ∀e ⊆ ∂K
}
,

Next, for a given ϕh ∈ W̃C
h (K), we introduce two sets DC

v and DC
∇ of linear operators from

the local virtual space W̃C
h (K) into R:

� DC
v : the values of ϕh(v) for all vertex v of the polygon K;

� DC
∇: the values of hv∇ϕh(v) for all vertex v of the polygon K,

where hv is a characteristic length attached to each vertex v, for instance to the average of the
diameters of the elements with v as a vertex.

Now, we consider the operator ΠD,C
K : W̃C

h (K) −→ P2(K) ⊆ W̃C
h (K) associated to the

conforming approach, which is computable using the sets DC
v and DC

∇ (for further details see
[18, Lemma 2.1]).

Next, for each K ∈ Th, we consider the conforming local virtual space given by:

WC
h (K) :=

{
ϕh ∈ W̃C

h (K) : (ϕh − ΠD,C
K ϕh, χ)0,K = 0 ∀χ ∈ P2(K)

}
.

For every decomposition Th of Ω into polygons K, we de�ne the conforming virtual spaces
WC

h :

WC
h :=

{
ϕh ∈ Φ : ϕh|K ∈ WC

h (K) ∀K ∈ Th
}
.

We recall that the global degrees of freedom are de�ned by DC
v and DC

∇ excluding the degrees
of freedom on the boundary Γ.

Construction of the enriching operator. We will extend the ideas of [107, 75]. First,
we will introduce some additional notations. Indeed, for each vertex v ∈ Vh and for all e ∈ Eh
we de�ne the following sets (patches):

ω(v) :=
⋃{

K ∈ Th : v ∈ K
}

and ω(e) :=
⋃{

K ∈ Th : e ∈ ∂K
}
.

Moreover, for each K ∈ Th we de�ne

ω(K) :=
⋃{

K̂ ∈ Th : K ∩ K̂ ̸= ∅
}
,
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and for a function ϕh ∈ H2(Th), we de�ned the following broken seminorm

|ϕh|2,ω(K),h :=
( ∑
K̂∈ω(K)

|ϕh|22,K̂
)1/2

.

We will denote by N(v) and by N(e) the number of elements in ω(v) and ω(e), respectively.
In addition, for any φh ∈ Φ +Mh, we introduce the piecewise L2-projection Π2, as Π2φh|K =
Π2
K(φh|K), where Π2

K is the usual L2-projection onto P2(K) de�ned in (6.3.5).

Let NC
dof := dim(WC

h ), then as in [107, 75] we can relabel the degrees of freedom using a

single subindex j = 1, . . . , NC
dof and will denote the degrees of freedom by {DC

j }
NC

dof
j=1 , which are

associated with the shape basis functions {ζj}
NC

dof
j=1 of the space WC

h . Employing this notation

the enriching operator Ẽh : Φ +Mh → WC
h is de�ned by:

Ẽhφh(x) =

NC
dof∑
j=1

DC
j (Ẽhφh)ζj(x),

where the degrees of freedom for Ẽhφh are determined by:

1. DC
1,v(Ẽhφh) = Ẽhφh(v) := φh(v) ∀v ∈ V int

h ;

2. DC
2,v(Ẽhφh) :=

1
N(v)

∑
K̂∈ω(v) hv∇(Π2φh|K̂(v)) ∀v ∈ V int

h .

The following result establishes approximation properties of the enriching operator Ẽh.

Proposition 6.4.1. For all ϕh ∈ Φ +Mh, there exists C > 0 independent of h, such that

2∑
j=0

h2jK |ϕh − Ẽhϕh|2j,K ≤ Ch4K |ϕh|22,ω(K),h ∀K ∈ Th.

Proof. First, we note that using the same arguments used in [107, Lemma 4.2] and [75, Lemma
4.1] (see also [4]), for all ϕh ∈ Φ +Mh, we have that

∥ϕh − Ẽhϕh∥0,K ≤ Ch2K |ϕh|2,ω(K),h and |ϕh − Ẽhϕh|2,K ≤ C|ϕh|2,ω(K),h. (6.4.2)

Now, by using standard inequality and (6.4.2), there exists a constant C > 0, independent to
hK , such that

|ϕh − Ẽhϕh|1,K ≤ C(hK |ϕh − Ẽhϕh|2,K + h−1
K ∥ϕh − Ẽhϕh∥0,K)

≤ C(hK |ϕh|2,ω(K),h + h2Kh
−1
K |ϕh|2,ω(K),h)

≤ ChK |ϕh|2,ω(K),h.

(6.4.3)

The desired result follows from (6.4.2) and (6.4.3).
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6.4.2 Discrete Sobolev embeddings and properties of the discrete

forms

In this subsection we establish two important estimates, which are useful to prove the
continuity of the discrete multilineal forms. We start presenting the main result of this section,
which establishes discrete Sobolev embeddings for the space Φ +Mh.

Theorem 6.4.1. For any 2 ≤ q <∞ there exists a positive constant C, independent of h, such
that

|ϕh|1,q,h ≤ Csob|ϕh|2,h ∀ϕh ∈ Φ +Mh.

Proof. Let 2 ≤ q <∞, ϕh ∈ Φ+Mh and Ẽh : Φ+Mh → WC
h be the enriching operator de�ned

in the above subsection. Then, by using the triangle inequality, the embedding of H2(Ω) into
W 1
q (Ω) and stability property in Proposition 6.4.1, we have that

|ϕh|1,q,h ≤ |ϕh − Ẽhϕh|1,q,h + |Ẽhϕh|1,q,Ω
≤ |ϕh − Ẽhϕh|1,q,h + C|Ẽhϕh|2,Ω
≤ |ϕh − Ẽhϕh|1,q,h + C|ϕh|2,h.

(6.4.4)

In what follows we will estimate the term |ϕh − Ẽhϕh|1,q,h in the right-hand side of (6.4.4).
To do that, for each K ∈ Th, we consider the sub-triangulation T K

h of property P1. Next, let

φ := ∇(ϕh − Ẽhϕh)|K and φ̂ be the image of φ under the a�ne transformation from T to the

reference triangle T̂ . Then, by using scaling arguments and the embedding of H1(T̂ ) into Lq(T̂ ),
there is C > 0 independent of K, such that

|ϕh − Ẽhϕh|1,q,T = ∥φ∥Lq(T ) ≤ C|T |1/q∥φ̂∥Lq(T̂ ) ≤ C|T |1/q∥φ̂∥1,T̂
≤ C|T |(2−q)/2q(∥φ∥20,T + h2T |φ|21,T )1/2

≤ C(h2T )
(2−q)/2q(|ϕh − Ẽhϕh|21,T + h2T |ϕh − Ẽhϕh|22,T )1/2

≤ Ch
(2−q)/q
K (|ϕh − Ẽhϕh|21,K + h2K |ϕh − Ẽhϕh|22,K)1/2,

where we have used the relation |T | ≈ h2T and that the size of each triangle in T K
h is comparable

with the polygon mesh size hK (see Remark 6.4.1).
Now, from the above estimate and Proposition 6.4.1 it holds

|ϕh − Ẽhϕh|1,q,T ≤ Ch
(2−q)/q
K hK |ϕh|2,ω(K),h ≤ Ch

2/q
K |ϕh|2,ω(K),h. (6.4.5)

From bound (6.4.5) and since the number of triangles of each virtual triangulation T K
h is

uniformly bounded by a number L (see again Remark 6.4.1), we obtain

|ϕh − Ẽhϕh|q1,q,K =
∑
T∈K

|ϕh − Ẽhϕh|q1,q,T ≤ C
∑
T∈K

h2K |ϕh|
q
2,ω(K),h ≤ CLh2K |ϕh|

q
2,ω(K),h.

Summing over each K ∈ Th, using the fact that q ≥ 2 and a ℓq-norms inequality, along with
0 < h ≤ C < 1, we obtain

|ϕh − Ẽhϕh|1,q,h =
( ∑
K∈Th

|ϕh − Ẽhϕh|q1,q,K
)1/q

≤ Ch2/q
( ∑
K∈Th

|ϕh|q2,ω(K),h

)1/q
≤ Ch2/q

( ∑
K∈Th

|ϕh|22,ω(K),h

)1/2
≤ Ch2/q|ϕh|2,h ≤ C|ϕh|2,h,

(6.4.6)
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where the constant C > 0 is independent of h.
Finally, combining the estimates (6.4.4) and (6.4.6) we conclude the proof.

The next result has been established in [163, Lemma 5.1] and allows to show that the
application | · |2,h is a norm in Mh.

Lemma 6.4.1. For all ϕh ∈ Mh, is holds:

∥ϕh∥0,Ω + |ϕh|1,h ≤ C|ϕh|2,h,

where C > 0 is a constant independent of h.

The following lemma summarize other properties of the discrete forms de�ned in (2.3.12)-
(2.3.15), which will be used to establish the well-posedness of the discrete problem.

Lemma 6.4.2. There exist positive constants CAh , α̃, Ĉh, CFh, independent of h, such that for
all ζh, φh, ϕh ∈ Mh the forms de�ned in (2.3.12)-(2.3.15) satis�es the following properties:

|Ah(φh, ϕh)| ≤ CAh|φh|2,h|ϕh|2,h and Ah(ϕh, ϕh) ≥ α̃|ϕh|22,h, (6.4.7)

Bh(ζh;φh, ϕh) ≤ Ĉh|ζh|2,h|φh|2,h|ϕh|2,h, (6.4.8)

Bh(ζh;ϕh, ϕh) = 0, and Bh(ζh;φh, ϕh) = −Bh(ζh;ϕh, φh), (6.4.9)

|Fh(ϕh)| ≤ CFh∥f∥0,Ω|ϕh|2,h. (6.4.10)

Proof. Properties in (6.4.7) are obtained from the de�nition of bilinear form Ah(·, ·) and the
stability property (6.3.14). To prove (6.4.8), we use the de�nition of trilinear form Bh(·; ·, ·)
and Hölder inequality to obtain

Bh(ζh;φh, ϕh) ≤ C2
bd

( ∑
K∈Th

∥∆ζh∥20,K
)1/2( ∑

K∈Th

∥curl φh∥4L4(K)

)1/4( ∑
K∈Th

∥∇ϕh∥4L4(K)

)1/4
≤ C2

bd|ζh|2,h|φh|1,4,h|ϕh|1,4,h
≤ Ĉh|ζh|2,h|φh|2,h|ϕh|2,h,

where Ĉh := (CbdCsob)
2 > 0, and Cbd, Csob are the constants in (6.3.6) and Theorem 6.4.1,

respectively.
Finally, the proof of properties (6.4.9) and (6.4.10) are obtained from the de�nition of forms

Bh(·; ·, ·) and Fh(·).

6.4.3 A �xed-point strategy

In this subsection we will develop a �xed-point strategy to establish the well-posedness of
discrete problem (6.4.1). Indeed, for a given ξh ∈ Mh, we de�ne the operator

T h : Mh −→ Mh

ξh 7−→ T h(ξh) = φh,

where φh is the solution of the following linear problem: �nd φh ∈ Mh, such that

νAh(φh, ϕh) +Bh(ξh;φh, ϕh) = Fh(ϕh) ∀ϕh ∈ Mh.

Next, we consider the ball Yh := {ϕh ∈ Mh : |ϕh|2,h ≤ CFh(α̃ν)
−1∥f∥0,Ω}. Then, we have

the following result for the operator T h.
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Lemma 6.4.3. The operator T h is well de�ned. Moreover, if

λh := ĈhCFh(α̃ν)
−2∥f∥0,Ω < 1. (6.4.11)

Then, T h : Yh → Yh is a contraction mapping.

Proof. The proof follows from the de�nition of operator T h, Lemma 6.4.2 and the Lax-Milgram
Theorem.

We �nish this section with the following result, which establishes that the discrete problem
is well-posed.

Theorem 6.4.2. If condition (6.4.11) is satis�ed, then there exists a unique ψh ∈ Mh solution
to problem (6.4.1) satisfying the following dependence of the data

|ψh|2,h ≤ CFh(α̃ν)
−1∥f∥0,Ω. (6.4.12)

Proof. The proof follows from Lemma 6.4.3 and the Banach �xed-point theorem.

Remark 6.4.2. We observe that to prove the well-posedness of the discrete problem (6.4.1) is
enough that the Sobolev embedding in Theorem 6.4.1 holds true just for the discrete space Mh

(see Lemma 6.4.2 and Theorem 6.4.2). However, to prove the error estimates in H2-, H1- and
L2-norms we need that the Sobolev inclusion holds true for the sum space Φ +Mh (see below
Lemmas 6.5.2 and 6.5.6). For this reason we have built a new operator and provided a more
general result considering the sum space in Theorem 6.4.1.

Remark 6.4.3. We recall that the main motivation for considering the lowest order case is that
we can derive optimal error estimates under minimal condition on the weak stream-function
solution, i.e., ψ ∈ H2+γ(Ω), with γ ∈ (1/2, 1] (cf. Theorem 6.2.2 and Section 6.5). However,
by combining the strategies presented here and the construction of the Stokes complex sequence
of high order developed in [164, Section 6.2], we can design a VE scheme of arbitrary order
k ≥ 3 to approximate problem (6.2.3) (and recovery the pressure �eld by using the algorithm
presented in Section 6.6.3). Moreover, by employing similar arguments used in the present work
and the ideas developed in [107, 75], we can extend the construction of an enriching operator

Ẽk
h for the high-order case (see Subsection 6.4.1), which allow us to prove the well-posedness of

the high-order discrete problem. On the other hand, we observe that to obtain error estimates
the weak stream-function solution must have high regularity, i.e., ψ ∈ H2+γ(Ω), with γ ≥ 1.

6.5 Error analysis

In this section we will develop an error analysis for the VEM proposed in (6.4.1). By exploit-
ing the naturally skew-symmetry property of the discrete trilinear form, and the consistency
and boundedness properties of discrete bilinear form, we write an abstract convergence result
for the nonlinear VE scheme. Then, by using the enriching operator, we establish key ap-
proximation properties involving the bilinear and trilinear forms, together with the consistency
errors, which allow the derivation of an optimal error estimate in broken H2-norm under the
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minimal regularity condition on the weak solution (cf. Theorem 6.2.2). Moreover, by employing
duality arguments and the enriching operator we also establish optimal error estimates in the
broken H1- and L2-norm under the same regularity condition on the stream-function ψ and the
force density f .

6.5.1 An abstract convergence result

We start with two technical lemmas involving the continuous and discrete forms B(·, ·, ·)
and Bh(·, ·, ·) de�ned in (6.2.5) and (6.3.11), respectively.

Lemma 6.5.1. Let B(·; ·, ·) be the trilinear form de�ned in (6.2.5). Then, for all ζ ∈ H2+t(Ω),
with t ∈ (1/2, 1], and for all φ ∈ H2(Ω) and ϕh ∈ H1(Th), it holds:

B(ζ;φ, ϕh) ≤ C∥ζ∥2+t,Ω∥φ∥2,Ω|ϕh|1,h.

Proof. By using the Hölder inequality, for each ζ ∈ H2+t(Ω), with t ∈ (1/2, 1], for all φ ∈ H2(Ω)
and for all ϕh ∈ H1(Th), we have

B(ζ;φ, ϕh) ≤
( ∑
K∈Th

∥∆ζ∥4L4(K)

)1/4( ∑
K∈Th

∥∇φ∥4L4(K)

)1/4( ∑
K∈Th

∥∇ϕh∥20,K
)1/2

≤ |ζ|2,4,Ω|φ|1,4,Ω|ϕh|1,h.

Then, from the Sobolev embeddings H2(Ω) ↪→ W1
4(Ω) and H2+t(Ω) ↪→ W2

4(Ω), with t ∈ (1/2, 1],
we obtain

B(ζ;φ, ϕh) ≤ C∥ζ∥2+t,Ω∥φ∥2,Ω|ϕh|1,h,

where C depends only on Ω. The proof is complete.

Remark 6.5.1. Following the above arguments, we can also prove that for all ζ ∈ H2+t(Ω),
with t ∈ (1/2, 1], and for all φh ∈ H1(Th) and ϕ ∈ H2(Ω), it holds

B(ζ;φh, ϕ) ≤ C∥ζ∥2+t,Ω|φh|1,h|ϕ|2,Ω.

The following lemma is a consequence of the Sobolev embedding result for the sum space
Φ +Mh (see Theorem 6.4.1).

Lemma 6.5.2. Let φ ∈ Φ and φh ∈ Mh. Then, for each ϕh ∈ Mh, it holds

|Bh(φ;φ, ϕh)−Bh(φh;φh, ϕh)| ≤ Ĉh

(
|φh|2,h|ϕh|2,h + |φ− φh + ϕh|2,h(∥φ∥2,Ω + |φh|2,h)

)
|ϕh|2,h.

Proof. By adding and subtracting adequate terms together with property (6.4.9) we obtain

Bh(φ;φ, ϕh)−Bh(φh;φh, ϕh)

= Bh(φ;φ− φh, ϕh) +Bh(φ− φh;φh, ϕh)

= Bh(φ;φ− φh + ϕh, ϕh)−Bh(φ;ϕh, ϕh) +Bh(φ− φh + ϕh;φh, ϕh)−Bh(ϕh;φh, ϕh)

= Bh(φ;φ− φh + ϕh, ϕh) +Bh(φ− φh + ϕh;φh, ϕh)−Bh(ϕh;φh, ϕh).

Thus, by employing Theorem 6.4.1 (with q = 4), we conclude the proof.
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In order to derive the abstract error estimate for the nonlinear VE scheme, we will introduce
the following consistency errors. Let ψ ∈ Φ be the solution of continuous problem (6.2.3), then
we de�ne:

Nh(ψ;ϕh) := νA(ψ, ϕh) +B(ψ;ψ, ϕh)− F (ϕh) ∀ϕh ∈ Mh, (6.5.1)

Ch(ψ;ϕh) := B(ψ;ψ, ϕh)−Bh(ψ;ψ, ϕh) ∀ϕh ∈ Mh. (6.5.2)

The �rst term above measures to what extent the continuous solution ψ does not satisfy
the nonconforming virtual element formulation (6.4.1) and the second term measure of the
variational crime perpetrated in the discretization of the trilinear form B(·; ·, ·). In addition,
we de�ne the following quantity:

∥F − Fh∥ := sup
ϕh∈Mh
ϕh ̸=0

|F (ϕh)− Fh(ϕh)|
|ϕh|2,h

. (6.5.3)

In Subsection 6.5.2 we will establish approximation properties for the above terms. Next,
we provide the following Strang-type result for our nonlinear VE scheme.

Theorem 6.5.1 (Abstract convergence result). Let ψ and ψh be the unique solutions to prob-
lems (6.2.3) and (6.4.1), respectively. There exists a positive constant C, independent of h,
such that

|ψ−ψh|2,h ≤ C
(

inf
ϕh∈Mh

|ψ−ϕh|2,h+ inf
χ∈P2(Th)

|ψ−χ|2,h+∥F−Fh∥+ sup
ϕh∈Mh
ϕh ̸=0

( |Nh(ψ;ϕh)|
|ϕh|2,h

+
|Ch(ψ;ϕh)|
|ϕh|2,h

))
,

where Nh(ψ; ·) and Ch(ψ; ·) are the consistency errors de�ned in (6.5.1) and (6.5.2), respectively.

Proof. Let ϕh ∈ Mh and set δh := ϕh − ψh. Then, by using triangle inequality we obtain

|ψ − ψh|2,h ≤ |ψ − ϕh|2,h + |δh|2,h. (6.5.4)

Now, from the property (6.4.7), the consistence of bilinear forms AKh (·, ·) (cf. (6.3.13)), we have

να̃|δh|22,h ≤ νAh(δh, δh) = νAh(ϕh, δh)− νAh(ψh, δh)

= νAh(ϕh, δh)− Fh(δh) +Bh(ψh;ψh, δh)

= ν
∑
K∈Th

(
AKh (ϕh − χ, δh) + AK(χ− ψ, δh)

)
+ ν

∑
K∈Th

AK(ψ, δh)− Fh(δh) +Bh(ψh;ψh, δh)

= ν
∑
K∈Th

(
AKh (ϕh − χ, δh) + AK(χ− ψ, δh)

)
+ (νA(ψ, δh)− Fh(δh) +Bh(ψh;ψh, δh))

= ν
∑
K∈Th

(
AKh (ϕh − χ, δh) + AK(χ− ψ, δh)

)
+Nh(ψ; δh)

+ [F (δh)− Fh(δh)] + [Bh(ψh;ψh, δh)−B(ψ;ψ, δh)],

(6.5.5)

where we have added and subtracted adequate terms and χ is an arbitrary element of P2(Th).
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From the continuity of bilinear forms AK(·, ·), AKh (·, ·), and by using the triangular inequal-
ity, we have∑

K∈Th

(
AKh (ϕh − χ, δh) + AK(χ− ψ, δh)

)
≤ C(|ϕh − ψ|2,h + |ψ − χ|2,h)|δh|2,h. (6.5.6)

Now, we add and subtract the term Bh(ψ;ψ, δh), then applying Lemma 6.5.2, we obtain

|Bh(ψh;ψh, δh)−B(ψ;ψ, δh)| ≤ |Bh(ψh;ψh, δh)−Bh(ψ;ψ, δh)|+ |Bh(ψ;ψ, δh)−B(ψ;ψ, δh)|
≤ Ĉh

(
|ψh|2,h|δh|2,h + |ψ − ϕh|2,h(∥ψ∥2,Ω + |ψh|2,h)

)
|δh|2,h + |Ch(ψ; δh)|.

(6.5.7)

Therefore, combining (6.5.5)-(6.5.7), we get

να̃|δh|2,h ≤ C(|ψ − ϕh|2,h + |ψ − χ|2,h) + Ĉh|ψh|2,h|δh|2,h

+
|F (δh)− Fh(δh)|

|δh|2,h
+

|Nh(ψ; δh)|
|δh|2,h

+
|Ch(ψ; δh)|
|δh|2,h

.

From the inequality above, we obtain

να̃(1− Ĉh(να̃)
−1|ψh|2,h)|δh|2,h ≤ C

(
|ψ − ϕh|2,h + |ψ − χ|2,h +

|F (δh)− Fh(δh)|
|δh|2,h

+
|Nh(ψ; δh)|

|δh|2,h
+

|Ch(ψ; δh)|
|δh|2,h

)
.

By using (6.4.12) and condition (6.4.11) we have that (1− Ĉh(να̃)
−1|ψh|2,h) ≥ 1− λh > 0.

Therefore, from above inequality, we have

|δh|2,h ≤ C
(
|ψ − ϕh|2,h + |ψ − χ|2,h + ∥F − Fh∥+ sup

ϕh∈Mh
ϕh ̸=0

( |Nh(ψ;ϕh)|
|ϕh|2,h

+
|Ch(ψ;ϕh)|
|ϕh|2,h

))
.

Finally, the desired result follows from (6.5.4) and the above estimate.

The next step is to provide approximation properties that can be used in Theorem 6.5.1.
In next subsection we will establish such properties.

6.5.2 Approximation results and a priori error estimate

We have the following approximation result for polynomials on star-shaped domains.

Proposition 6.5.1. For every ϕ ∈ H2+t(K), with t ∈ [0, 1], there exist ϕπ ∈ P2(K) and C > 0,
independent of h, such that

∥ϕ− ϕπ∥ℓ,K ≤ Ch2+t−ℓK |ϕ|2+t,K , ℓ = 0, 1, 2.

For the virtual space Mh we have the following approximation result (see [20, 163, 116, 67]).
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Proposition 6.5.2. For each ϕ ∈ H2+t(Ω), with t ∈ [0, 1], there exist ϕI ∈ Mh and C > 0,
independent of h, such that

∥ϕ− ϕI∥ℓ,K ≤ Ch2+t−ℓK |ϕ|2+t,K , ℓ = 0, 1, 2.

Let Eh : Mh → WC
h be the restriction of the operator Ẽh to the spaceMh, i.e., Eh := Ẽh|Mh

.
We note that this operator satis�es the approximation properties in Proposition 6.4.1. Then,
by using the operator Eh, we will establish an error estimate involving the bilinear form A(·, ·),
which will be useful to obtain an error estimate in broken H2-norm under minimal regularity
condition on the exact stream-function ψ (cf. Theorem 6.2.2).

Lemma 6.5.3. Let φ ∈ H2+t(Ω), with t ∈ [0, 1]. Then, for all ϕh ∈ Mh there exists a positive
constant C, independent of h, such that

A(φ, ϕh − Ehϕh) ≤ Cht∥φ∥2+t,Ω|ϕh|2,h.

Proof. The proof has been established in [4, Lemma 4.10].

The following result establishes error estimates for the consistence errors Nh(ψ; ·) and
Ch(ψ; ·) de�ned in (6.5.1) and (6.5.2), respectively.

Lemma 6.5.4. Let ψ ∈ H2+γ(Ω)∩Φ be the solution of problem (6.2.3). Then, for all ϕh ∈ Mh,
there exists a constant C > 0, independent to h, such that

|Nh(ψ;ϕh)| ≤ Chγ(∥ψ∥2+γ,Ω + ∥f∥0,Ω)|ϕh|2,h,
|Ch(ψ;ϕh)| ≤ Chγ(∥ψ∥1+γ,Ω + ∥ψ∥2,Ω)∥ψ∥2+γ,Ω|ϕh|2,h.

Proof. Let ϕh ∈ Mh. Then, we can take Ehϕh ∈ WC
h ⊂ Φ as test function in (6.2.3) to obtain

νA(ψ,Ehϕh) +B(ψ;ψ,Ehϕh) = F (Ehϕh). (6.5.8)

Thus, from (6.5.1) and (6.5.8), we get

Nh(ψ;ϕh) = νA(ψ, ϕh) +B(ψ;ψ, ϕh)− F (ϕh − Ehϕh)− F (Ehϕh)

= νA(ψ, ϕh − Ehϕh) +B(ψ;ψ, ϕh − Ehϕh)− F (ϕh − Ehϕh).
(6.5.9)

By using the identity (6.5.9), the Cauchy-Schwarz inequality, Lemmas 6.5.1, 6.5.3 along
with Proposition 6.4.1, we get

|Nh(ψ;ϕh)| ≤ Cνhγ∥ψ∥2+γ,Ω|ϕh|2,h + C|ψ|2+γ,Ω|ψ|2,Ω|ϕh − Ehϕh|1,h + CF∥f∥0,Ω|ϕh − Ehϕh|1,h
≤ Chγ(∥ψ∥2+γ,Ω + ∥f∥0,Ω)|ϕh|2,h,

where C > 0 is independent of h.
The proof of second property follows by adapting the arguments used in [136, Lemma 4.2]

to the nonconforming case and using Theorem 6.4.1.

For the consistence error in the approximation de�ned in (6.5.3), we have the following
result.
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Lemma 6.5.5. Let f ∈ L2(Ω), F (·) and Fh(·) be the functionals de�ned in (6.2.6) and (6.3.12),
respectively. Then, we have the following estimate:

∥F − Fh∥ ≤ Ch∥f∥0,Ω.

Proof. The proof follows from the de�nition of the functionals F (·) and Fh(·), together with
approximation properties of the projector Π1

K .

The following result provides the rate of convergence of our virtual element scheme in broken
H2-norm.

Theorem 6.5.2. Let ψ ∈ Φ∩H2+γ(Ω) and ψh ∈ Mh be the unique solutions of problem (6.2.3)
and problem (6.4.1), respectively. Then, there exists a positive constant C, independent of h,
such that

|ψ − ψh|2,h ≤ Chγ(∥ψ∥2+γ,Ω + ∥f∥0,Ω).

Proof. The proof follows from Theorem 6.5.1, Propositions 6.5.1 and 6.5.2, together with Lem-
mas 6.5.4 and 6.5.5.

6.5.3 Error estimates in broken H1 and L2

In this section we provide new optimal error estimates in broken H1- and L2-norms for the
stream-function by using duality arguments and employing the enriching operator Eh, under
same regularity of the weak solution ψ and data f , considered in Theorem 6.5.2.

We start establishing the following key preliminary result involving the forms B(·; ·, ·) and
Bh(·; ·, ·), which will be useful to provide the error estimates in the weak norms. This term will
deal with the consistency error associate to the trilinear form present in the VEM approach
and as we will observe, its manipulation is not direct, so it will require special attention due to
the nonlinearity involved.

Lemma 6.5.6. Let ψ ∈ Φ∩H2+γ(Ω) and ψh ∈ Mh be the unique solutions of problems (6.2.3)
and (6.4.1), respectively. Assuming that f ∈ L2(Ω) and let φ ∈ H2+t(Ω), with t ∈ (1/2, 1].
Then, it holds

TB(φ) := Bh(ψh;ψh, φ)−B(ψh;ψh, φ) ≤ C
(
hγ+t + h2γ

)
(∥f∥0,Ω + ∥ψ∥2+γ,Ω) ∥φ∥2+t,Ω

+ 2CregC̃
2
sobCbd∥f∥0,Ω|ψ − ψh|1,h∥φ∥1+t,Ω,

where C > 0 is a constant independent of h, and C̃sob, Creg and Cbd are the constants in (6.2.7),
Theorem 6.2.2 and (5.3.5), respectively.

Proof. By using the de�nition of trilinear forms B(·; ·, ·) and Bh(·; ·, ·), adding and subtracting
suitable terms and using the orthogonality property of the L2-projections, we have the following
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identity

TB(φ) =
∑
K∈Th

((∆ψh − Π0
K∆ψh)(curl ψh − curl ψ),∇φ)0,K

+ (Π0
K(∆ψh −∆ψ)(curl ψh −Π1

Kcurl ψh),∇φ)0,K
+ (Π0

K(∆(ψh − ψ))Π1
Kcurl ψh,∇φ−Π1

K∇φ)0,K
+ (Π0

K∆ψΠ
1
K(curl (ψh − ψ)),∇φ−Π1

K∇φ)0,K
+ (Π0

K∆ψ(curl ψh −Π1
Kcurl ψh),∇φ)0,K + ((∆ψh − Π0

K∆ψh)curl ψ,∇φ)0,K
+ (Π0

K∆ψΠ1
Kcurl ψ,∇φ−Π1

K∇φ)0,K
=: T1 + T2 + T3 + T4 + T5 + T6 + T7.

In what follows, we will establish estimates for each terms on the right hand side of the previous
identity. For the term T1 we use the Hölder and triangle inequalities, along with approximations
properties of Π0

K , to obtain

T1 ≤
∑
K∈Th

∥∆ψh − Π0
K∆ψh∥0,K∥curl ψh − curl ψ∥L4(K)∥∇φ∥L4(K)

≤
∑
K∈Th

(2∥∆ψh −∆ψ∥0,K + ∥∆ψ − Π0
K∆ψ∥0,K)∥curl (ψh − ψ)∥L4(K)∥∇φ∥L4(K)

≤ C(|ψ − ψh|2,h + hγ∥ψ∥2+γ,Ω)|ψ − ψh|1,4,h∥∇φ∥L4(Ω)

≤ Ch2γ(∥f∥0,Ω + ∥ψ∥2+γ,Ω)∥φ∥2+t,Ω,
where we have used the Hölder inequality (for sequences), continuous Sobolev inclusion, along
with Theorems 6.4.1 and 6.5.2.

Now, for T2 we follow similar arguments to obtain

T2 ≤ Ch2γ(∥f∥0,Ω + ∥ψ∥2+γ,Ω)∥φ∥2+t,Ω.

For the term T3 we employ again the Hölder inequality, the continuity of the projector Π1
K ,

along with Theorems 6.4.1 and 6.5.2, to obtain:

T3 ≤
∑
K∈Th

∥Π0
K(∆ψh −∆ψ)∥0,K∥Π1

Kcurl ψh∥L4(K)∥∇φ−Π1
K∇φ∥L4(K)

≤ C|ψ − ψh|2,h|ψh|1,4,hht|∇φ|W t
4(Ω)

≤ Chγ+t(∥f∥0,Ω + ∥ψ∥2+γ,Ω)∥φ∥2+t,Ω.
For the term T4, we follow similar steps to those used above, to get

T4 ≤
∑
K∈Th

∥Π0
K∆ψ∥0,K∥Π1

Kcurl (ψh − ψ)∥L4(K)∥∇φ−Π1
K∇φ∥L4(K)

≤ Chγ+t(∥f∥0,Ω + ∥ψ∥2+γ,Ω)∥φ∥2+t,Ω.
Next, for the term T5, we add and subtract suitable terms, use the Hölder inequality,

properties of the L2-projections Π1
K and Π0

K , together with continuous Sobolev embeddings to
obtain

T5 ≤
∑
K∈Th

∥Π0
K∆ψ∥L4(K)∥curl ψh −Π1

Kcurl ψh∥0,K∥∇φ∥L4(K)

≤
(
2|ψ − ψh|1,h + Ch1+γ∥ψ∥2+γ,Ω

)
(Cbd∥∆ψ∥L4(Ω)∥∇φ∥L4(Ω))

≤ 2CregC̃
2
sobCbd∥f∥0,Ω|ψ − ψh|1,h∥φ∥1+t,Ω + Chγ+t∥ψ∥2+γ,Ω∥φ∥2+t,Ω.
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Repeating the same arguments, we obtain the following bounds for the terms T6 and T7:

T6 + T7 ≤ Chγ+t(∥f∥0,Ω + ∥ψ∥2+γ,Ω)∥φ∥2+t,Ω.

Finally, by combining the above bounds we obtain the desired result.

Moreover, for the bilinear form A(·, ·) we have the following auxiliary result [4, Lemma 4.11].

Lemma 6.5.7. For φ ∈ H2+t(Ω) and ϕ ∈ Φ ∩ H2+t(Ω), with t ∈ [0, 1], it holds:

A(φ, ϕ− ϕI) ≤ Ch2t∥φ∥2+t,Ω∥ϕ∥2+t,Ω,

where ϕI ∈ Mh is the interpolant of ϕ in the virtual space Mh (cf. Proposition 6.5.2).

In order to establish the desired error estimates, we consider the following assumption:

2C2
regC̃

2
sobCbd∥f∥0,Ω < 1, (6.5.10)

where C̃sob, and Creg and Cbd are the constants in (6.2.7), Theorem 6.2.2 and (5.3.5), respec-
tively.

The following theorem establish the main result of this subsection.

Theorem 6.5.3. Let ψ ∈ Φ∩H2+γ(Ω) and ψh ∈ Mh be the unique solutions of problems (6.2.3)
and (6.4.1), respectively. Then, under assumption (6.5.10) there exists a positive constant C,
independent of h, such that

∥ψ − ψh∥0,Ω + |ψ − ψh|1,h ≤ Ch2γ(∥ψ∥2+γ,Ω + ∥f∥0,Ω). (6.5.11)

Proof. First we will prove the H1 estimate in (6.5.11). With this aim, let ψI ∈ Mh be the
interpolant of ψ such that Proposition 6.5.2 holds true. We set δh := (ψh − ψI) ∈ Mh. Then,
we write

ψh − ψ = (ψh − ψI) + (ψI − ψ) = (ψI − ψ) + (δh − Ehδh) + Ehδh.

Thus, by using the triangle inequality together with Propositions 6.4.1 and 6.5.2, along with
Theorem 6.5.2, we obtain

|ψ − ψh|1,h ≤ |ψ − ψI |1,h + |δh − Ehδh|1,h + |Ehδh|1,h ≤ Ch2γ∥ψ∥2+γ,Ω + ∥∇Ehδh∥0,Ω. (6.5.12)

Now, the goal is to estimate the term ∥∇Ehδh∥0,Ω. To do that, we consider the following dual
problem: given ψ ∈ Φ (the unique solution of the formulation (6.2.3)), �nd ϕ ∈ Φ, such that

ADP (ψ;φ, ϕ) := νA(φ, ϕ) +B(ψ;φ, ϕ) +B(φ;ψ, ϕ) = (∇(Ehδh),∇φ)0,Ω ∀φ ∈ Φ, (6.5.13)

where A(·, ·) and B(·; ·, ·) are the continuous forms de�ned in (6.2.4) and (6.2.5), respectively.
Following the same arguments in [111], we have that problem (6.5.13) is well-posed and from
Theorem 6.2.2, we obtain that ϕ ∈ Φ ∩ H2+γ(Ω) and

∥ϕ∥2+γ,Ω ≤ Creg∥∇Ehδh∥0,Ω, (6.5.14)

where C > 0 is a constant independent of h. Taking φ = Ehδh ∈ WC
h ⊂ Φ as test function,

adding and subtracting δh in problem (6.5.13), we get

∥∇Ehδh∥20,Ω = ADP (ψ;Ehδh, ϕ) = ADP (ψ;Ehδh − δh, ϕ) +ADP (ψ; δh, ϕ) =: I1 + I2. (6.5.15)
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Now, we will obtain bounds for the terms I1 and I2 in the above identity. For I1, we apply
Lemma 6.5.3, Remark 6.5.1, Propositions 6.4.1 and 6.5.2 to obtain

I1 := ADP (ψ;Ehδh − δh, ϕ)

= νA(Ehδh − δh, ϕ) +B(ψ;Ehδh − δh, ϕ) +B(Ehδh − δh;ψ, ϕ)

≤ Cνhγ|δh|2,h∥ϕ∥2+γ,Ω + C∥ψ∥2+γ,Ω|Ehδh − δh|1,h∥ϕ∥2,Ω +B(Ehδh − δh;ψ, ϕ)

≤ Cνh2γ∥ψ∥2+γ,Ω∥ϕ∥2+γ,Ω + Ch2γ∥ψ∥2+γ,Ω∥ϕ∥2,Ω +B(Ehδh − δh;ψ, ϕ).

(6.5.16)

To estimate the term B(Ehδh − δh;ψ, ϕ), we start recalling that ψ, ϕ ∈ H2+γ(Ω), with γ ∈
(1/2, 1], then by using the Sobolev inclusion H2+γ(Ω) ↪→ W 1

4 (Ω), we have

|curl ψ · ∇ϕ|1,Ω ≤ ∥curl ψ∥1,4,Ω∥∇ϕ∥1,4,Ω ≤ C2
sob∥ψ∥2+γ,Ω∥ϕ∥2+γ,Ω < +∞.

Therefore, curlψ · ∇ϕ ∈ H1(Ω) (hence belongs to H1(K) for each K ∈ Th). Thus, by using the
de�nition of B(·; ·, ·) we have

B(Ehδh − δh;ψ, ϕ) =
∑
K∈Th

(∆(Ehδh − δh), curl ψ · ∇ϕ)0,K

≤
∑
K∈Th

∥∆(Ehδh − δh)∥−1,K∥curl ψ · ∇ϕ∥1,K .

Now, by using the de�nition of the dual norm and an integration by parts, we obtain

∥∆(Ehδh − δh)∥−1,K = sup
φ∈H1

0 (K)

(∆(Ehδh − δh), φ)0,K
|φ|1,K

= sup
φ∈H1

0 (K)

(∇(Ehδh − δh),∇φ)0,K
|φ|1,K

≤ |Ehδh − δh|1,K .

From the two estimates above, the Hölder inequality for sequences, Proposition 6.4.1 and esti-
mate (6.5.14), we have

B(Ehδh − δh;ψ, ϕ) ≤
∑
K∈Th

|Ehδh − δh|1,K∥curl ψ · ∇ϕ∥1,K ≤ |Ehδh − δh|1,h∥curl ψ · ∇ϕ∥1,Ω

≤ Ch2γ∥ψ∥2+γ,Ω∥ϕ∥2+γ,Ω ≤ Ch2γ∥ψ∥2+γ,Ω∥∇Ehδh∥0,Ω.

Consequently, inserting the above inequality in (6.5.16), we arrive to

I1 ≤ Ch2γ∥ψ∥2+γ,Ω∥∇Ehδh∥0,Ω. (6.5.17)

Now, we will estimate the remaining term I2. Indeed, we split again δh := (ψh−ψ)+ (ψ−ψI),
then

I2 = −ADP (ψ;ψ − ψh, ϕ) +ADP (ψ;ψ − ψI , ϕ) =: −I21 + I22. (6.5.18)

By using analogous arguments as those employed to bound the term I1 and applying Proposi-
tion 6.5.2 and Lemma 6.5.7, we obtain

I22 ≤ Ch2γ∥ψ∥2+γ,Ω∥∇Ehδh∥0,Ω. (6.5.19)
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Next, adding and subtracting ϕI , B(ψ;ψ, ϕI) and other suitable terms together with the de�-
nition of the continuous and discrete problems (cf. (6.2.3) and (6.4.1), respectively), we get

I21 = νA(ψ − ψh, ϕ) +B(ψ;ψ − ψh, ϕ) +B(ψ − ψh;ψ, ϕ)

= νA(ψ − ψh, ϕ− ϕI) + νA(ψ − ψh, ϕI) +B(ψ;ψ − ψh, ϕ) +B(ψ − ψh;ψ, ϕ)

= νA(ψ − ψh, ϕ− ϕI) + F (ϕI)− Fh(ϕI) + νAh(ψh, ϕI) +Bh(ψh;ψh, ϕI)

−B(ψ;ψ, ϕI)− νA(ψh, ϕI) +B(ψ;ψ − ψh, ϕ) +B(ψ − ψh;ψ, ϕ)

= νA(ψ − ψh, ϕ− ϕI) + ν[Ah(ψh, ϕI)− A(ψh, ϕI)] + [F (ϕI)− Fh(ϕI)]

+ [Bh(ψh;ψh, ϕI − ϕ)−B(ψ;ψ, ϕI − ϕ)]

+B(ψ − ψh;ψ − ψh, ϕ) + [Bh(ψh;ψh, ϕ)−B(ψh;ψh, ϕ)]

=: TA1 + TA2 + TF + TB1 + TB2 + TB3,

(6.5.20)

where we have used also the identity

B(ψ;ψ − ψh, ϕ) +B(ψ − ψh;ψ, ϕ) +Bh(ψh;ψh, ϕ)−B(ψ;ψ, ϕ)

= B(ψ − ψh;ψ − ψh, ϕ) + [Bh(ψh;ψh, ϕ)−B(ψh;ψh, ϕ)].

Applying standard arguments and (6.5.14), we obtain that

TA1 + TA2 + TF + TB2 ≤ Ch2γ (∥f∥0,Ω + ∥ψ∥2+γ,Ω) ∥∇Ehδh∥0,Ω. (6.5.21)

For the remaining term TB1, we employ Lemmas 6.5.2 and 6.5.4, to obtain

|TB1| ≤ |B(ψ;ψ, ϕI − ϕ)−B(ψ;ψ, ϕI − ϕ)|+ |Bh(ψ;ψ, ϕI − ϕ)−Bh(ψh;ψh, ϕI − ϕ)|
≤ Chγ(∥ψ∥1+γ,Ω + ∥ψ∥2,Ω)∥ψ∥2+γ,Ω|ϕI − ϕ|2,h
+ Ĉh (|ψh|2,h|ϕI − ϕ|2,h + |(ψ − ψh) + (ϕI − ϕ)|2,h(∥ψ∥2,Ω + |ψh|2,h)) |ϕI − ϕ|2,h

≤ Ch2γ(∥ψ∥1+γ,Ω + ∥ψ∥2,Ω)∥ψ∥2+γ,Ω∥∇Ehδh∥0,Ω
+ Ch2γ(∥ψ∥2+γ,Ω + ∥f∥0,Ω)(∥ψ∥2,Ω + |ψh|2,h)∥∇Ehδh∥0,Ω
+ Ch2γ(∥ψ∥2,Ω + |ψh|2,h)∥∇Ehδh∥0,Ω,

(6.5.22)

where we have used Theorem 6.5.2 and (6.5.14). For the term TB3, we observe that TB3 = TB(ϕ),
then by using Lemma 6.5.6 and (6.5.14) we get

TB3 ≤ Ch2γ(∥ψ∥2+γ,Ω + ∥f∥0,Ω)∥ϕ∥2+γ,Ω + 2CregC̃
2
sobCbd∥f∥0,Ω|ψ − ψh|1,h∥ϕ∥2+γ,Ω

≤ Ch2γ(∥ψ∥2+γ,Ω + ∥f∥0,Ω)∥∇Ehδh∥0,Ω + 2C2
regC̃

2
sobCbd∥f∥0,Ω|ψ − ψh|1,h∥∇Ehδh∥0,Ω.

(6.5.23)

Combining (6.5.18)-(6.5.23), we have

|I2| ≤ C(∥ψ∥2+γ,Ω + ∥f∥0,Ω)∥∇Ehδh∥0,Ω + 2C2
regC̃

2
sobCbd∥f∥0,Ω|ψ − ψh|1,h∥∇Ehδh∥0,Ω. (6.5.24)

The H1 error estimate follows by combining the estimates (6.5.12), (6.5.15), (6.5.17) and

(6.5.24) together with the fact that (1− 2C2
regC̃

2
sobCbd∥f∥0,Ω) > 0 (see assumption (6.5.10)).
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Finally, the L2 estimate in (6.5.11) is obtained from the triangle inequality, Propositions 6.4.1
and 6.5.2, Lemma 6.5.7 together with Theorem 6.5.2, as follows:

∥ψ − ψh∥0,Ω ≤ ∥ψ − ψI∥0,Ω + ∥δh − Ehδh∥0,Ω + ∥Ehδh∥0,Ω
≤ Ch2+γ∥ψ∥2+γ,Ω + Ch2(|ψh − ψ|2,h + |ψ − ψI |2,h) + C|Ehδh|1,Ω
≤ Ch2γ(∥ψ∥2+γ,Ω + ∥f∥0,Ω),

where we have used norm equivalence in Φ. The proof is complete.

We �nish this section establishing the following remark.

Remark 6.5.2. If f is a smooth function, then applying an integration by parts and the bound-
ary conditions in (6.2.6), we have that (f , curl ϕ)0,Ω = (rot f , ϕ)0,Ω ∀ϕ ∈ Φ. Inspired by this
identity, we can consider an alternative right hand side to write a discrete problem, as follows:

F̃h(ϕh) :=
∑
K∈Th

(rot f ,Π2
Kϕh)0,K ∀ϕh ∈ Mh. (6.5.25)

We note that F̃h(·) is fully computable using the degrees of freedom DM1−DM2, since Π2
K is

computable (cf. Lemma (3.3.2)).
For the VE scheme (6.4.1) considering the alternative load term (6.5.25), we can provide an

analogous analysis as the one developed in the above sections. Therefore, we can obtain rate of
convergences as in Theorems 6.5.2 and 6.5.3 (with the minimal regularity condition on the force
density f , i.e., f ∈ H(rot; Th)). We will present a numerical test to con�rm the error estimates
in this case (cf. Subsection 6.7.4). Moreover, we observe that if the load term is irrotational,
i.e., f = ∇φ (for some φ), it is possible improve the error estimate in Theorem 6.5.2 by
removing the dependence of the error by the load term f .

6.6 Postprocessing of further �elds of interest

In this section we propose postprocessing techniques that allow us to obtain approximations
of the velocity, vorticity and pressure �elds from the discrete stream-function ψh. Moreover,
we provide optimal error estimates for all the postprocessed variables.

6.6.1 Postprocessing the velocity �eld

In order to propose an approximation for the velocity �eld, we recall that if ψ ∈ Φ is the
unique solution of continuous problem (6.2.3), then

u = curl ψ. (6.6.1)

At the discrete level, we de�ne a piecewise linear approximation of the velocity �eld u as

ũh|K := Π1
Kcurl ψh, (6.6.2)

where ψh ∈ Mh is discrete virtual solution delivered by solving problem (6.4.1) and the operator
Π1
K is de�ned by the vectorial version of (6.3.5).
We have the following result for velocity vector ũh.
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Theorem 6.6.1. The discrete velocity �eld ũh de�ned by the relation (6.6.2) is computable
from the degrees of freedom DM1 −DM2. Moreover, under the hypotheses of Theorem 6.5.2,
there exists a positive constant C, independent of h, such that

∥u− ũh∥0,Ω + hγ|u− ũh|1,h ≤ Ch2γ(∥ψ∥2+γ,Ω + ∥f∥0,Ω).

Proof. From Lemma 6.3.2 we have immediately the computability of ũh by using DM1−DM2.
On the other hand, the error estimates, follow from (6.6.1), (6.6.2), the triangular inequality,
stability property of Π1

K , together with Theorems 6.5.2 and 6.5.3.

6.6.2 Postprocessing the vorticity �eld

Due its importance and applications in �uid mechanics, di�erent works have been devoted to
approximate the vorticity �eld of the incompressible Navier-Stokes equations; see for instance
[44, 102, 13] and the references therein. By solving the nonconforming discrete problem (6.4.1),
we only obtain an approximation for the stream-function. Nevertheless, in this subsection
we propose an approximation for the vorticity �eld ω via postprocessing formula through the
discrete stream-function ψh and the projection Π0

K de�ned by the relation (6.3.5).
First, we recall that ω = rotu, then using the identity u = curl ψ, we have obtain ω =

rotu = rot(curl ψ) = −∆ψ. Then, at discrete level we de�ne the following approximation for
the vorticity:

ω̃h|K := −Π0
K(∆ψh), (6.6.3)

where ψh ∈ Mh is the unique solution of problem (6.4.1) and Π0
K is de�ned in (6.3.5).

We have the following result for the discrete vorticity.

Theorem 6.6.2. The discrete vorticity �eld ω̃h de�ned by the relation (6.6.3) is computable
from the degrees of freedom DM1 −DM2. Moreover, under the hypotheses of Theorem 6.5.2,
there exists a positive constant C, independent of h, such that

∥ω − ω̃h∥0,Ω ≤ Chγ(∥ψ∥2+γ,Ω + ∥f∥0,Ω).

Proof. The proof follows by using the same arguments in Theorem 6.6.1.

6.6.3 Postprocessing the pressure �eld

This subsection is devoted to developing a strategy to recover the pressure variable form
the discrete stream-function solution ψh of problem (6.4.1), which is based on the algorithm
presented in [72] and extended to the nonconforming VE approach.

We start by recalling that if ψ ∈ Φ is the unique solution of the weak formulation (6.2.3),
then the velocity �eld is given by u = curl ψ. Thus, we can write

b(v, p) := (p, div v)0,Ω = ν(∇u,∇v)0,Ω + ((∇u)u,v)0,Ω − (f ,v)0,Ω

= ν(∇curl ψ,∇v)0,Ω + ((∇curl ψ)curl ψ,v)0,Ω − (f ,v)0,Ω ∀v ∈ H.
(6.6.4)

Now, we consider the functional F(ψ, f)(·) : H → R given by

F(ψ, f)(v) := ν(∇curl ψ,∇v)0,Ω + ((∇curl ψ)curl ψ,v)0,Ω − (f ,v)0,Ω ∀v ∈ H. (6.6.5)
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By using (6.6.4) and (6.6.5), we reformulate (6.2.1) as a variational problem for the pressure
variable: given ψ ∈ Φ the unique solution of problem (6.2.3) and f ∈ L2(Ω), �nd p ∈ Q such
that

b(v, p) = F(ψ, f)(v) ∀v ∈ H, (6.6.6)

where H and Q are the spaces de�ned in (6.2.2). From an equivalence of problems and the
LBB theory we have that problem (6.6.6) has a unique solution p ∈ Q (see [103]).

The di�culties to discretize directly problem (6.6.6) have been discussed in [71, Section 9].
Thus, inspired in this work we consider the following equivalent problem: �nd (w, p) ∈ H×Q,
such that

a(w,v) + b(v, p) = F(ψ, f)(v) ∀v ∈ H

b(w, q) = 0 ∀q ∈ Q,
(6.6.7)

where a(ṽ,v) := (∇ṽ,∇v)0,Ω ∀ṽ, v ∈ H. We have that this Stokes-like problem is well-posed.
Moreover, w = 0. Now the goal is to discretize problem (6.6.7).

Nonconforming Crouzeix-Raviart-type VE discretization

In this subsection we will present a VE scheme to solve problem (6.6.7). First, we recall that
the Morley-type VE space Mh is in a Stokes-complex relation with the Crouzeix-Raviart type
VE space Uh, de�ned in (6.3.4) and (6.3.2), respectively. Apart from the previously mentioned
spaces, we introduce the space for pressure approximation as

Qh := {qh ∈ Q : qh|K ∈ P0(K) ∀K ∈ Th}. (6.6.8)

At last, we introduce the auxiliary space

Ûh :=
{
vh ∈ Uh :

∑
K∈Th

(qh, div vh)0,K = 0 ∀qh ∈ Qh

}
, (6.6.9)

where Uh is the Crouzeix-Raviart-type VE space de�ned in (6.3.2).

Lemma 6.6.1. Let Mh and Ûh be the spaces de�ned in (6.3.4) and (6.6.9), respectively. Then,
it holds that

curl Mh = Ûh,

Proof. The proof can be followed from [2, Lemma 6.1].

By employing the projection operator Π∇
K de�ned in (6.3.1), we discretize the bilinear form

a(·, ·) through the bilinear form ah : Uh × Uh → R, which is such that

ah(wh,vh) :=
∑
K∈Th

aKh (wh,vh) =
∑
K∈Th

(
aK
(
Π∇
Kuh,Π

∇
Kvh

)
+ SK∇

(
(I−Π∇

K )uh, (I−Π∇
K )vh

))
,

where SK∇(·, ·) is a symmetric and positive de�nite bilinear form satisfying the stability condition

c#a
K(vh,vh) ≤ SK∇(vh,vh) ≤ c#aK(vh,vh) ∀vh ∈ Ker(Π∇

K ),
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for some pair of strictly positive, real constants c# and c#, independent of h. Then, we de�ne
the bilinear form bh : Uh ×Qh → R as

bh(vh, qh) :=
∑
K∈Th

(qh, div vh)0,K . (6.6.10)

The next step is the construction of a discrete version of the lineal functional de�ned
in (6.6.5). To do that, �rst we consider the constant vector �eld Π0

K : Uh(K) → P0(K)2,
de�ned on Uh(K). Then, we consider the following discrete functional Fh(ψh, f)(·) : Uh → R

Fh(ψh, f)(vh) :=
∑
K∈Th

(
aK
(
Π∇
Kcurl ψh,Π

∇
Kvh

)
+ ((∇Π1

Kcurl ψh)Π
1
Kcurl ψh − f ,Π0

Kvh)0,K

)
.

(6.6.11)

From the stability properties of projectors Π∇
K , Π

1
K and Π0

K , we have that the Fh(ψh, f)(·) is
continuous. Moreover, the projection Π0

K is computable by using the degrees of freedom D U .
Then, from this fact and Lemma 6.3.1, we conclude that this functional is fully computable.

Now, we present the nonconforming VE discretization of the Stokes problem (6.6.7) that
reads as: �nd (wh, ph) ∈ Uh ×Qh such that

ah(wh,vh) + bh(vh, ph) = Fh(ψh, f)(vh) ∀vh ∈ Uh,

bh(wh, qh) = 0 ∀qh ∈ Qh,
(6.6.12)

where Qh is the space de�ned in (6.6.8).
The scheme (6.6.12) is well-posed since ah(·, ·) is coercive and continuous, the bilinear form

bh(·, ·) is continuous and satis�es a discrete inf-sup condition on the pair of functional spaces

Uh-Qh (see [164]) and curlMh = Ûh. We summarize this fact in the following result.

Theorem 6.6.3. Let bh(·, ·) be the discrete bilinear form de�ned in (6.6.10). Then, there exists
a strictly positive, real constant β > 0 such that

sup
vh∈ Uh\{0}

bh(vh, qh)

|vh|1,h
≥ β∥qh∥0,Ω ∀qh ∈ Qh.

Moreover, there exists a unique (wh, ph) ∈ Uh ×Qh, solution of problem (6.6.12).

Error estimate for the pressure scheme

In this subsection we develop an abstract error result for the VEM presented above. More-
over, we provide error estimates involving some consistent errors. Finally, by combining these
results we derive an optimal error estimate for the pressure �eld.

First, we focus on deriving a bound on the di�erence between the functional (6.6.11) applied
to the stream-function ψ solving the continuous variational formulation (6.2.3) and its virtual
element approximation solving problem (6.4.1).

Lemma 6.6.2. Let ψ ∈ Φ and ψh ∈ Mh be the solution to problems (6.2.3) and (6.4.1),
respectively. Moreover, let Fh(ψ, f)(·) and Fh(ψh, f)(·) be the functionals de�ned in (6.6.11)
(applied to ψ and ψh, respectively). Then, there exists positive constant CFh, independent of h,
such that ∣∣Fh(ψ, f)(vh)−Fh(ψh, f)(vh)

∣∣ ≤ CFh|ψ − ψh|2,h|vh|1,h.
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Proof. Upon employing the de�nition (6.6.11), we obtain∣∣Fh(ψ, f)(vh)−Fh(ψh, f)(vh)
∣∣ ≤ ν

∑
K∈Th

∣∣aK(Π∇
Kcurl (ψ − ψh),Π

∇
Kvh)

∣∣
+
∑
K∈Th

∣∣((∇Π1
Kcurl ψ)Π

1
Kcurl ψ,Π

0
Kvh)0,K − ((∇Π1

Kcurl ψh)Π
1
Kcurl ψh,Π

0
Kvh)0,K

∣∣.
Since Π∇

K is a continuous operator with respect to the H1-inner product, we bound the �rst
term as follows

ν
∑
K∈Th

∣∣aK(Π∇
Kcurl (ψ − ψh),Π

∇
Kvh)

∣∣ ≤ Cν|ψh − ψ|2,h|vh|1,h.

By adding and subtracting the term ((∇Π1
Kcurlψh)Π

1
Kcurlψ,Π

0
Kvh)0,K , applying the Hölder

inequality and Theorem 6.4.1, along with stability properties of projectors Π∇
K , Π

1
K and Π0

K�
we obtain∑

K∈Th

∣∣((∇Π1
Kcurl ψ)Π

1
Kcurl ψ,Π

0
Kvh)0,K − ((∇Π1

Kcurl ψh)Π
1
Kcurl ψh,Π

0
Kvh)0,K

∣∣
=
∑
K∈Th

∣∣((∇Π1
Kcurl (ψ − ψh))Π

1
Kcurl ψ,Π

0
Kvh)0,K

∣∣
+
∣∣((Π1

Kcurl ψh)Π
1
Kcurl (ψ − ψh),Π

0
Kvh)0,K

∣∣
≤ C|ψ − ψh|2,h|ψ|2,Ω|vh|1,h + C|ψh|2,h|ψ − ψh|2,h|vh|1,h.

The desired result follows by combining the above estimates.

In continuation, we de�ne the consistency error Θh(·, ·) as follows: given ψ ∈ Φ the solution
of problem (6.2.3), we consider

Θh(ψ,vh) := Fh(ψ, f)(vh)− bh(vh, p) ∀vh ∈ Uh. (6.6.13)

We have the following abstract error estimate for the pressure recovery scheme.

Theorem 6.6.4. Let ψ ∈ Φ ∩ H2+γ(Ω), with γ ∈ (1/2, 1] and ψh ∈ Mh be the solutions of
problems (6.2.3) and (6.4.1), respectively. Moreover, let (w, p) ∈ H×Q and (wh, ph) ∈ Uh×Qh

be the solutions of problems (6.6.7) and (6.6.12). Then, there exists a positive constant C,
independent of h, such that

∥p− ph∥0,Ω ≤ C
(

inf
qh∈Qh

∥p− qh∥0,Ω + sup
vh∈ Uh
vh ̸=0

|Θ(ψ,vh)|
|vh|1,h

+ |ψ − ψh|2,h
)
, (6.6.14)

where Θ(ψ, ·) is the consistency error de�ned in (6.6.13).

Proof. Adding and subtracting adequate terms in (6.6.12), for each vh ∈ Uh we have

ah(wh,vh) = Fh(ψh, f)(vh)− bh(vh, ph)

= Fh(ψh, f)(vh)−Fh(ψ, f)(vh) + Fh(ψ, f)(vh)− bh(vh, p) + bh(vh, p− ph)

= (Fh(ψh, f)(vh)−Fh(ψ, f)(vh)) + Θ(ψ,vh) + bh(vh, p− ph).

(6.6.15)
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Taking vh = wh in (6.6.15), then by using the fact that bh(wh, qh) = bh(wh, ph) = 0 ∀qh ∈ Qh,
the continuity of bh(·, ·) and Lemma 6.6.2, we get

|wh|1,h ≤ C
(
|ψ − ψh|2,h + ∥p− qh∥0,Ω + sup

vh∈ Uh
vh ̸=0

|Θ(ψ,vh)|
|vh|1,h

)
. (6.6.16)

By using again (6.6.15) and the linearity of bh(·, ·), for all qh ∈ Qh we have

bh(vh, qh − ph) = bh(vh, qh − p) + bh(vh, p− ph)

= bh(vh, qh − p) + ah(wh,vh)− (Fh(ψh, f)(vh)−Fh(ψ, f)(vh))−Θ(ψ,vh).

Thus, by using the two last estimate above, Lemma 6.6.2, the inf-sup condition in Lemma 6.6.3,
we obtain

β∥qh − ph∥0,Ω ≤ C
(
∥p− qh∥0,Ω + |wh|1,h + sup

vh∈ Uh
vh ̸=0

|Θ(ψ,vh)|
|vh|1,h

)
.

The desired result follows from the triangle inequality, the above estimate and (6.6.16).

Lemma 6.6.3. Let ψ ∈ Φ∩H2+γ(Ω) be the solution of problem (6.2.3). Then, for p ∈ Q∩Hγ(Ω)
there exists a positive constant C, independent of h, such that

|Θh(ψ,vh)| ≤ Chγ(∥p∥γ,Ω + ∥ψ∥2+γ,Ω + ∥f∥0,Ω)|vh|1,h ∀vh ∈ Uh.

Proof. By using the de�nition of the consistency term Θh(ψ, ·) (cf. (6.6.13)), the weak conti-
nuity of the discrete function of the Crouzeix-Raviart space on edges, and employing standard
arguments as [164, Theorem 13], together with the real method of interpolation, we can obtain
the required result.

Finally, the next result provides the rate of convergence for our pressure VE scheme.

Theorem 6.6.5. Under same assumptions of Theorem 6.6.4, for p ∈ Q ∩ Hγ(Ω), there exists
C > 0, independent of h, such that

∥p− ph∥0,Ω ≤ Chγ(∥p∥γ,Ω + ∥ψ∥2+γ,Ω + ∥f∥0,Ω).

Proof. The proof follows from (6.6.14), taking qh = Π0
Kp in Theorem 6.6.4, Lemma 6.6.3 and

Theorem 6.5.2.

Remark 6.6.1. We recall that if we are interesting to approximate only the main unknown of
problem (6.2.3), we can consider the Morley-type VE introduced in [4, Subsection 3.2], avoiding
the construction of the Stokes complex sequence. Moreover, we are able to recover the velocity
and vorticity �elds by using the postprocessing of subsections 6.6.1 and 6.6.2, and obtain the
theoretical analysis presented here. However, the pressure recovery would not be available. Thus,
we point out that the main advantage to use the Stokes complex sequence associated to Mh and
Uh is that we can additionally compute the pressure �eld from the discrete stream-function,
with optimal rate of convergence, making the suitable setting.
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6.7 Numerical results

In this section, we present four numerical experiments to test the practical performance of
the proposed VE discretization (6.4.1) and assess the theoretical predictions as estimated in
Sections 6.5 and 6.6. We �rst approximate the discrete stream-function ψ by employing Morley-
type VE space (6.3.4), and then we recover the velocity and vorticity �elds by employing
suitable projection operators. Further, we recover the pressure variable by solving a saddle
point problem, where the velocity space is in Stokes complex relationship with the stream-
function space (cf. Section 6.6.3). In each test, in order to solve the nonlinear system resulting
from (6.4.1), we apply the Newton method, with a �xed tolerance of Tol = 10−8 and the initial
guess is given by ψin

h = 0. We have tested the method by using di�erent families of meshes such
as:

� T 1
h : Square meshes;

� T 2
h : Triangular meshes;

� T 3
h : Sequence of CVT (Centroidal Voronoi Tessellation);

� T 4
h : Trapezoidal meshes,

which are posted in Figure 6.1. We quantify the errors by employing the projection operators:
ΠD
K , Π

1
K , and Π0

K . The following formulas are used for the computation of experimental errors,
for all i ∈ {0, 1, 2} and for each j ∈ {0, 1}:

Ei(ψ) :=
( ∑
K∈Th

|ψ − ΠD
Kψh|2i,K

)1/2
, Ej(u) :=

( ∑
K∈Th

|u−Π1
Kcurl ψh|2j,K

)1/2
;

E0(ω) :=
( ∑
K∈Th

∥ω − Π0
K∆ψh∥20,K

)1/2
, E0(p) :=

( ∑
K∈Th

∥p− ph∥20,K
)1/2

.

(6.7.1)

Furthermore, we let Ri(χ), where χ ∈ {u, ψ, ω} and i ∈ {0, 1, 2}, denotes the experimental
rates of convergence of the approximate solutions in broken H2-, H1- and L2-norms.

Figure 6.1: Sample meshes. T 1
h , T 2

h , T 3
h and T 4

h (from left to right).
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6.7.1 Test 1. Kovasznay �ow

In this numerical test, we solve the Navier-Stokes problem (6.1.1) on the domain Ω :=
(−0.5, 1.5) × (0, 2). We take the load term f and boundary conditions in such a way that the
analytical solution is given by the Kovasznay solution:

u(x, y) :=

(
1− exp(λx) cos(2πy)
λ
2π

exp(λx) sin(2πy)

)
, ψ(x, y) := y − 1

2π
exp(λx) sin(2πy),

p(x, y) := −(1/2) exp(2λx) + p̄, ω :=
(λ2 − 4π2

2π

)
exp(λx) sin(2πy),

where λ = Re
2

−
(
Re2

4
+ 4π2

)1/2
with Re = ν−1 and p̄ is a constant that is set to satisfy

zero mean condition. We have computed the discrete stream-function for di�erent values of
viscosity coe�cient, e.g., ν = 1, 0.01, and errors for the stream-function (cf. (6.7.1)) are posted
in Figure 6.2, and Figure 6.4, respectively. Further, by employing the formulas (6.6.2) and
(6.6.3), we have recovered discrete velocity and vorticity �elds for ν = 1, 0.01. The error curves
of the velocity and vorticity are posted in Figure 6.3, and Figure 6.5, while the error curves
for the pressure are posted in Figure 6.6 for both values of ν. Besides, for all the meshes the
maximum number of iterations that are required to achieve the tolerance in the Newton method
is 4 for ν = 1 and 6 for ν = 0.01.

In Figure 6.7, we have posted the discrete stream-function and pressure �elds for ν = 1,
using the mesh T 1

h , with h = 1/32.
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Figure 6.2: Test 1: Convergence of the stream-function ψ in broken H2-, H1- and L2-norms
with mesh re�nement for di�erent types of meshes, using ν = 1.

6.7.2 Test 2. L-shaped domain

In this example, we would like to examine the rates of convergence of the discrete stream-
function, velocity and vorticity �elds on a nonconvex L-shaped domain, where the exact solution
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Figure 6.3: Test 1: Convergence of the velocity �eld u in broken H1- and L2-norms, and vorticity
�eld ω in L2-norm (from left to right) with mesh re�nement for di�erent types of meshes, using
ν = 1.
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Figure 6.4: Test 1: Convergence of the stream-function in broken H2, H1- L2-norms with mesh
re�nement for di�erent types of meshes, using ν = 0.01.

ψ has less regularity. For the computational domain, we considered Ω = (−1, 1) × (−1, 1) \(
[0, 1)× (−1, 0]

)
. The exact solution is given by ψ(r, θ) := r5/3 sin(5θ

3
), where r := (x2 + y2)1/2,

and θ is the angle with the vertical axis. Since ∂ψ
∂r

is unbounded near the origin, then the
solution ψ has weak regularity near the origin. The rate of convergence of stream-function
velocity and vorticity solutions are posted in Table 6.1 for viscosity ν = 1, and using the mesh
T 2
h . From the posted results, we observed that the rates of convergence are in accordance
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Figure 6.5: Test 1: Convergence of the velocity �eld u in broken H1- and L2-norms, and vorticity
�eld ω in L2-norm (from left to right) with mesh re�nement for di�erent types of meshes, using
ν = 0.01.
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Figure 6.6: Test 1: Convergence of the pressure (p) in L2-norm with mesh re�nement for
di�erent types of meshes, using ν = 1 and ν = 0.01. Left panel shows the errors curve of p for
ν = 1, and right panel shows the errors curve of p for ν = 0.01.

with the theoretical prediction for all the variables. Further, we have chosen exact pressure
as p := sin(x) − sin(y) − p, where p is a constant that is set to satisfy zero mean condition,
i.e., (p, 1)0,Ω = 0. The convergence behavior of the pressure �eld is posted in Table 6.2. It is
observed that initially the rate of convergence is slightly higher than the predicted order as in
Theorem 6.6.3. However, for �ner mesh we observe expected order of convergence, i.e., O(h2/3).
Further, we report that the presence of singularity of the stream-function at re-entrant corner
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(a) Discrete stream-function (b) Discrete pressure

Figure 6.7: Test 1: �Snapshots� of the approximate stream-function and pressure, using ν = 1
and the mesh T 1

h , h = 1/32.

a�ects the convergence order of pressure �eld as proven in Theorem 6.6.3. In this example, the
number of iterations that are required for the Newton method is 4.

h E2(ψ) R2(ψ) E1(ψ) R1(ψ) E0(ψ) R0(ψ) E1(u) R1(u) E0(u) R0(u) E0(ω) R0(ω)

1/4 5.7631e-2 � 7.6316e-3 � 3.3797e-3 � 1.0336e-1 � 7.5336e-3 � 6.1773e-2 �
1/8 3.8328e-2 0.59 2.9766e-3 1.34 1.2923e-3 1.38 6.7243e-2 0.62 2.8964e-3 1.37 4.2442e-2 0.54

1/16 2.4854e-2 0.62 1.1634e-3 1.35 5.5365e-4 1.22 4.3160e-2 0.64 1.1236e-3 1.36 2.7923e-2 0.60
1/32 1.5907e-2 0.64 4.6577e-4 1.32 2.3946e-4 1.20 2.7492e-2 0.65 4.5976e-4 1.29 1.7999e-2 0.63
1/64 1.0032e-2 0.66 1.9139e-4 1.28 1.0326e-4 1.21 1.7435e-2 0.66 1.8729e-4 1.29 1.1483e-2 0.65

Table 6.1: Test 2. Errors for the stream-function, and the post-processed velocity, vorticity
�elds in broken H2-, H1- and L2-norms for ν = 1, using the mesh T 2

h .

h E0(p) R0(p)

1/4 3.3613e-1 �
1/8 1.7549e-1 0.93
1/16 9.3685e-2 0.90
1/32 5.2943e-2 0.82
1/64 3.1274e-2 0.75

Table 6.2: Test 2. Errors for the pressure variable in L2-norm for ν = 1, using the mesh T 2
h .

6.7.3 Test 3. The lid-driven cavity problem

In the third example, we assess the nature of the �uid for the lid-driven cavity �ow. This
is a benchmark test to validate the numerical schemes for di�erent values of viscosity ν. The
computational domain is unit square with upper horizontal lid is moving with uniform velocity
u := (1, 0), and �xed boundary condition, i.e., u := (0, 0) is applied to other static walls.
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In stream-function formulation, we have imposed the following Dirichlet boundary conditions:
ψ = ψx = 0, and ψy = 1 on moving lid, and ψ = ∂ψ

∂n
= 0 on all other static walls. In Figure 6.8,

we posted the discrete stream-function and pressure �eld for ν = 0.01 and using the mesh T 3
h ,

with h = 1/64. The small values of ν exhibits singularities near x = 0, and x = 1 [102, 143],
which increases for smaller values of ν. Such behaviors are noticed in other methods [102], and
persists also for �ner grid. Further, we observed that the vortex center has moved towards
the direction of velocity for small values of ν. For this numerical experiment, the number of
iterations that are required for the Newton method is 5.

(a) Discrete stream-function (b) Discrete pressure

Figure 6.8: Test 3: �Snapshots� of the approximate stream-function and pressure for ν = 0.01,
using the mesh T 3

h , with h = 1/64.

6.7.4 Test 4. Performance of the scheme for small viscosity

In this example, we mainly focus to discuss the performance of the scheme for small values
of viscosity coe�cients. We consider the exact stream-function, velocity and pressure solutions
as

ψ(x, y) := x2y2(1−x)2(1−y)2, u(x, y) :=
(
x2(1− x)2(2y − 6y2 + 4y3)

−y2(1− y)2(2x− 6x2 + 4x3)

)
, p(x, y) := x3y3− 1

6
.

The numerical approximations of the stream-function are computed by employing the
scheme (6.4.1), with the alternative load term given by (6.5.25) (cf. Remark 6.5.2). The
computational domain is considered as Ω := (0, 1)2. Further, we discretize the domain with
square elements with di�erent mesh sizes, and computed the errors for stream-function in bro-
ken H2-norm for di�erent values of ν, which are posted in Figure 6.9. We observed that the
errors are accurate when the parameter ν within the range ν ∈ [10−3, 100] and the errors in-
crease for ν = 10−4. We claim that these results are in accordance with the general behaviour
of the exactly divergence-free Galerkin schemes which are more robust with respect to small
viscosity parameters, see for instance [35] in the VEM approach. However, we would like to
point out that our scheme is not pressure robust. Finally, we report that the maximum number
of iterations that are required to achieve the tolerance in the Newton method is 7.
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Figure 6.9: Test 4. Errors of the stream-function E2(ψ), using the VE scheme (6.4.1) with the
alternative load term (6.5.25), for di�erent values of ν and the mesh T 1

h .



Chapter 7

Conclusions and future work

7.1 Concluding remarks

In this thesis we have designed, analyzed and implemented several conforming and noncon-
forming virtual element methods for solving problems with application to the �uid mechanics
and large scale wind-driven ocean circulation, reformulated in terms of the stream-function of
the velocity �eld. More precisely, we have proposed C1-virtual element schemes to approximate
the quasi-geostrophic equations of the ocean, the Oseen problem, the nonlinear Navier-Stokes
equations and the coupled Boussinesq system under the stream-function approach.

Furthermore, by using an alternative discretization, we have developed a nonconforming
Morley-type virtual element scheme to solve the Navier-stream problem in stream-function
form.

The study has included analysis for discrete schemes, novel and rigorous analysis of conver-
gence in several norms of interest. Moreover, it includes numerical implementation to validate
the theoretical results and illustrate the behaviour of the numerical schemes have been reported.

The main conclusions of this thesis are:

1. In Chapter 2, we have proposed a C1-VEM of lowest order (i.e., k = 2) for the quasi-
geostrophic equations of the ocean in stream-function form. The C1 virtual space and
the discrete scheme are built in a straightforward way due to the �exibility of the vir-
tual approach. Besides, the computational cost in terms of the degrees of freedom is
low; the scheme employ only 3 DoFs per vertex of the mesh. We have established the
well-posedness of the discrete problem by using the Banach �xed-point Theorem and as-
suming smallness of the data. Besides, under standard assumptions on the computational
domain, optimal error estimates in H2-norm for the stream-function have been provided.
Finally, several numerical experiments that illustrate the behavior of the virtual scheme
and con�rm our theoretical results on di�erent families of polygonal meshes have been
reported.

The results of this chapter are in article [136].

2. InChapter 3, we have written a stream-function weak formulation for the Oseen problem,
which corresponds to a fourth-order PDEs. Thus, a conforming virtual element discretiza-
tion requires globally C1-continuity. In this chapter, we have exploited the possibility of
VEM to implement global discrete spaces of H2 in a straightforward way even on general
polygonal meshes. Under a CLF-type condition we have established the well-posedness of

166
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the discrete problem and an error estimate in H2-norm is provided.Furthermore, strate-
gies for recovering additional variables of interest, such as velocity, vorticity, and pressure
�elds, have been developed, along with the corresponding error analysis. Finally, we have
reported a set of numerical experiments, which allows us to assess the performance of the
proposed method.

The results contained in this work are in the book chapter [137].

3. In Chapter 4, we have designed VEMs of high-order for solving the steady Navier-
Stokes equations in stream-function form on polygonal meshes. A novel and rigorous error
analysis have been developed, allowing the derivation of optimal error bounds in several
important norms, under minimal regularity condition of the weak solution. In addition,
we have extend this scheme the Navier-Stokes system with boundary conditions on the
pressure. Algorithms to obtain high order approximations of several variables of interest
in �uid mechanics have also been provided. These procedures are based on adequate
postprocessing of the discrete stream function and allow to derive optimal error estimates.
Moreover, we have reported several benchmark numerical experiments illustrating the
behaviour and highlighting salient features of the present stream virtual element schemes.
We have included the approximation of the Kovasznay and lid-driven cavity solutions
on general polygonal meshes and using small values of the viscosity ν. Additionally,
in Test 4.7.3, we investigated the performance of our VEMs, considering a hydrostatic
�uid problem. We noted that the outcomes achieved in this study are in agreement
with Galerkin methods that maintain the divergence-free property, where the partial
separation of velocity and pressure errors positively impacts the velocity calculations. In
addition, we have reported a numerical example with less regularity, which validates our
new theoretical �ndings in Theorem 4.4.3.

The results of this chapter are in the following submitted article [138].

4. In Chapter 5, we have designed and analyzed a high order fully-discrete virtual element
for the nonsteady Boussinesq system in terms of the stream-function and temperature
variables. We combined the C1- and C0-conforming virtual element approaches with
backward Euler schemes and proposed a fully-coupled formulation which is implicit in
the nonlinear terms. By using �xed-point arguments we proved the existence of discrete
solutions and, under a small time step condition, we have shown uniqueness of such so-
lutions. The ensuing numerical method is unconditionally stable. Error estimates in
L2(H2) ∩ L∞(H1) and L2(H1) ∩ L∞(L2) are provided for the stream-function and tem-
perature, respectively. A set of benchmark numerical experiments have been reported,
illustrating the good performance of the method and the theoretical rates of convergence.
In particular, we have included the benchmark natural convection test, and it can be seen
that the results show good agreement with the results presented in the existing literature.

The results contained in this chapter gave rise to the article [40].

5. In Chapter 6, we have developed a Stokes complex sequence associate to the Morley-
and Crouzeix-Raviart-type VE spaces enabling not only the approximation of the stream-
function but also the pressure reconstruction of the stationary Navier-Stokes equation
in stream-function formulation on simply connected polygonal domains (not necessarily
convex). Based on the ideas presented in [107, 75], a new enriching operator has been con-
structed from the sum space Φ+Mh to the conforming counterpart of the nonconforming
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Morley spaceMh. Then, by using this operator and its approximation properties, we have
provided novel discrete Sobolev embeddings for the sum space Φ+Mh. With the above
tools and the classical Banach �xed-point Theorem, the well-posedness of the discrete
problem has been established. In addition, by employing this enriching operator a rigor-
ous error analysis to obtain optimal error bounds in broken H2-, H1- and L2-seminorms,
under minimal regularity conditions on the weak stream-function solution have been de-
veloped. Procedures to compute additional �elds of physical interest, such as the velocity,
vorticity and pressure have been proposed. More precisely, by employing suitable pro-
jection operators, we have computed the velocity and vorticity �elds via postprocessing
formulas of the discrete stream-function. However, we emphasize that we cannot recover
the pressure variable directly from the discrete stream-function. So, we have developed a
new pressure recovery algorithm by employing the Stokes complex relation of the Morley-
and the Crouzeix-Raviart VE spaces, allowing the derivation of optimal error estimates
in L2-norm.

The results developed in this chapter mark a noteworthy step in furthering the progress
of design and analysis of new schemes based on the fully nonconforming Morley-type
VEM for solving fourth-order problems in more complicated scenarios, such as, nonlinear
coupled and/or time dependent systems present in the �uid and solid mechanics, and in
large scale wind-driven ocean circulation. In particular, we note that the discrete Sobolev
embedding (cf. Theorem 6.4.1) can be used to provided a well-posedness analysis for
thermal convection problems in stream-function�temperature form, the von Karmán plate
system and the quasi-geostrophic equations of the ocean, among others.

The results contained in this chapter are in the article [5].

In general, it observed that the present stream-function approach provides an attractive
and competitive alternative to solve two dimensional �uid �ow problems; we eliminated the
vector velocity �eld and �uid pressure from the weak formulation. Thus, there is only a scalar
unknown and the approach leads to a smaller system compared with the classical velocity-
pressure formulation. In addition, the incompressibility constraint is automatically satis�ed,
and the formulation avoids the di�culties related with the boundary values for the vorticity
�eld (which is presented in the stream-function�vorticity form).

In addition, from the numerical experiments (see for instance, the tests reported in Subsec-
tions 4.7.2, 4.7.4, 5.6.2 and 6.7.4), it can observed numerically that our VE schemes presents
certain robustness with respect to small di�usion parameters. Moreover from test 4.7.3 the
C1-VEM yields an hydrostatic velocity solution to the no �ow problem for the Navier-Stokes
equations; this good behaviour can be attributed to the fact that the incompressibility condition
is satis�ed automatically, a scenario in which the partial decoupling of the velocity and pressure
errors leads a positive e�ect on the velocity computation. Furthermore, we observed that the
resulting trilinear forms (continuous and discrete) in the momentum equation are naturally
skew-symmetric, allowing more direct stability and convergence arguments. The advantages
described above come at the price of a scheme without velocity and pressure �elds, which
need to be recovered. However for the stationary cases, if the primitive �elds (velocity and
pressure) are required, we have proposed algorithms to recover these variables. Additionally,
we computed the intrinsic vorticity variable. Other potential drawbacks are a larger condition
number due to the higher order derivatives involved, and a more complex extension to the three
dimensional case.
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Finally, it observed that the C1-VEMs approach employed in this study provides an attrac-
tive and competitive alternative to solve fourth-order PDEs that involve the stream-function
formulation in the context of �uid �ow problems, by employing a low number of degrees of free-
dom. For instance, in the lowest order case k = 2, the total degrees of freedom used were 3Nv,
where Nv denotes the number of vertices in the polygonal mesh and for the case k = 3, the total
of degrees of freedom employed were 3Nv +Ne, where Ne denotes the number of edges in the
polygonal mesh. Moreover, from the analysis provided in Section 4.4.2 (see also Theorem 4.4.3),
we observed that the C1-VE of lowest order needs the slightest regularity requirement for the
weak stream-function to establish optimal error estimates, even for the nonlinear Navier-Stokes
problem in stream-function form, compared with the classical C1-FEMs (cf. Table 1.1).

7.2 Future work

In this section we propose di�erent challenging topics which (are currently and) can be
explored, building upon the theoretical and numerical paths developed in the thesis.

1. To extend the nonconforming VE scheme presented in Chapter 6 to the steady Boussi-
nesq equations with temperature-dependent parameters, formulated in terms of the stream-
function and temperature �elds. This system is an extension of the classical Boussinesq
model. In addition to the standard nonlinear coupling through the buoyancy term and
the convective heat transfer, the system has an additional nonlinearity due to the in-
troduction of temperature-dependent viscosity and thermal conductivity, which makes
the problem even more challenging. In particular, we are interested in designing and
analyzing new VEMs for solving this problem by coupling the Morley-type VE scheme
developed in Chapter 6 and the nonconforming VEMs approach presented in [14, 65].

2. To develop a C1-VEM on curved domains with applications to �uid mechanics problems
in stream-function formulation. We observe that the special construction of the VEM
avoids the explicit expression of the basis functions and allows the direct de�nition of the
physical space (no reference element is employed), even on elements that are curved. In
particular, we are interesting in:

� to design a C1-VEM of high order k ≥ 2 for solving two dimensional fourth-order
problems with curved edges;

� to construct a suitable interpolant in the virtual element space;

� to provide a rigorous analysis of stability and optimal error estimates;

� to delivery numerical implementation and applications to �uid �ow problems. For
instance, to solve the Stokes and Navier-Stokes equations in stream-function form.

These topics above are currently under investigation.

3. To derive a posteriori error estimators for the subjects studied in Chapters 4 and 6. We
plan to extend the results presented in [75, 67] to develop reliable and e�cient residual-
based a posteriori error estimators for the C1-conforming and Morley-type VEMs designed
in these chapters to the nonlinear Navier-Stokes problem in stream-function form.
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4. To study of the challenging three-dimensional case of the stream-function formulation
by using conforming and/or nonconforming approaches. We are interested in carrying
out the three-dimensional case by exploiting the VEM framework. It is important to
note that in this case, the situation is more complicated. The stream-function is now
a vector function (also referred to as a vector potential). Additionally, challenges arise
due to factors such as the geometry, the �gauge condition� (it is required that the vector
potential be also divergence-free), and the boundary conditions associated with the vector
potential. We plan to study this topic by exploiting conforming and/or nonconforming
approaches.
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